Homework

Trigonometric Limits

1. Determine the value of each limit, if it exists.

a)
$$\lim_{x \to 0} \frac{\sin 5x}{x}$$

b)
$$\lim_{x \to 0} \frac{\sin 6x}{\cos 4x}$$

c)
$$\lim_{x \to 0} \frac{\tan x}{4x}$$

d)
$$\lim_{x \to 0} \frac{\sin^3 2x}{\sin^3 3x}$$
 e) $\lim_{x \to 0} \frac{x^3}{\tan^3 2x}$ f) $\lim_{x \to 0} \frac{2 \tan^2 x}{x^2}$ g) $\lim_{x \to 0} \frac{\sin 3x}{x}$ h) $\lim_{x \to 0} \frac{\sin x}{7x}$ i) $\lim_{x \to 0} \frac{\sin 5x}{\sin 6x}$

e)
$$\lim_{x\to 0} \frac{x^3}{\tan^3 2x}$$

$$f) \quad \lim_{x \to 0} \frac{2 \tan^2 x}{x^2}$$

$$g) \quad \lim_{x \to 0} \frac{\sin 3x}{x}$$

$$h) \quad \lim_{x \to 0} \frac{\sin x}{7x}$$

i)
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 6x}$$

$$\lim_{x\to 0} \frac{\sin 6x}{6}$$

$$k) \quad \lim_{x \to 0} \frac{\sin^2 3x}{x^2}$$

$$\lim_{x \to 0} \frac{\tan x}{4x}$$

2. a) Evaluate
$$\lim_{x\to 0} \frac{x}{\sin \frac{x}{2}}$$
.

b) Describe how you evaluated the limit in part a).

Determine each limit.

a)
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx}$$

$$b) \lim_{x \to 0} \frac{\tan x - \sin x}{x \cos x}$$

c)
$$\lim_{x\to 0} \frac{1-\cos x}{x}$$

$$\mathbf{d)} \quad \lim_{x \to 0} \frac{\sin x}{\tan x}$$

e)
$$\lim_{x\to 0} \frac{\sin^2 x \cos x}{1-\cos x}$$

f)
$$\lim_{x \to 0} \frac{1 - \cos x}{\tan x}$$

$$g) \quad \lim_{x \to 0} \frac{\sin 2x}{2x^2 + x}$$

a)
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx}$$
 b) $\lim_{x \to 0} \frac{\tan x - \sin x}{x \cos x}$ c) $\lim_{x \to 0} \frac{1 - \cos x}{x}$ d) $\lim_{x \to 0} \frac{\sin x}{\tan x}$ e) $\lim_{x \to 0} \frac{\sin^2 x \cos x}{1 - \cos x}$ f) $\lim_{x \to 0} \frac{1 - \cos x}{\tan x}$ g) $\lim_{x \to 0} \frac{\sin 2x}{2x^2 + x}$ h) $\lim_{x \to 0} \frac{2 \sin x - \sin 2x}{x \cos x}$ i) $\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$

i)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2}$$

j)
$$\lim_{x \to 0} \frac{1 - \cos^2 x}{x^2}$$
 k) $\lim_{x \to 0} \frac{1 - \cos 2x}{5x^2}$ l) $\lim_{x \to 0} \frac{\tan 3x}{3 \tan 2x}$

k)
$$\lim_{x \to 0} \frac{1 - \cos 2x}{5x^2}$$

1)
$$\lim_{x \to 0} \frac{\tan 3x}{3 \tan 2x}$$

4. a) Evaluate
$$\lim_{x\to 0} \frac{\sin x}{x + \sin x}$$
.

b) Describe how you evaluated the limit in part a).

Determine each limit.

$$a) \quad \lim_{x \to 0} \frac{\sin \frac{x}{5}}{x}$$

$$b) \quad \lim_{x \to 0} \frac{\sin 3x}{5}$$

c)
$$\lim_{x \to 0} \frac{\sin x \cos x}{x}$$

d)
$$\lim_{x \to 0} \frac{\sin^2 x}{x \cos x}$$

d)
$$\lim_{x\to 0} \frac{\sin^2 x}{x\cos x}$$
 e) $\lim_{x\to 0} \frac{\cos\left(\frac{\pi}{2} - x\right)}{x}$ f) $\lim_{x\to 0} \frac{2\tan^2 x}{x^2}$

f)
$$\lim_{x \to 0} \frac{2 \tan^2 x}{x^2}$$

g)
$$\lim_{x\to 0} \frac{1-\cos 2x}{x}$$
 h) $\lim_{x\to 0} \frac{\tan 6x}{2x}$

h)
$$\lim_{x\to 0} \frac{\tan 6x}{2x}$$

i)
$$\lim_{x\to 0} \frac{\cos 2x - 1}{2x^2}$$

Answers:

- 1. a) 5 b) 0 c) $\frac{1}{4}$ d) $\frac{8}{27}$ e) $\frac{1}{8}$ f) 2
- g) 3 h) $\frac{1}{7}$ i) $\frac{5}{6}$ j) 0 k) 9 l) $\frac{1}{4}$ 2. a) 2 b) Answers will vary. 3. $\frac{a}{b}$ b) 0 c) 0 d) 1 e) 2 f) 0 g) 2

- h) 0 i) 2 j) 1 k) $\frac{2}{5}$ l) $\frac{1}{2}$
- **4.** a) $\frac{1}{2}$ b) Answers will vary.
- 5. a) $\frac{1}{5}$ b) 0 c) 1 d) 0 e) 1 f) 2 g) 0
- h) 3 i) -1