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Chapter 3

DETERMINANTS

3.1. Introduction

In the last chapter, we have related the question of the invertibility of a square matrix to a question of
solutions of systems of linear equations. In some sense, this is unsatisfactory, since it is not simple to
find an answer to either of these questions without a lot of work. In this chapter, we shall relate these
two questions to the question of the determinant of the matrix in question. As we shall see later, the
task is reduced to checking whether this determinant is zero or non-zero. So what is the determinant?

Let us start with 1× 1 matrices, of the form

A = ( a ) .

Note here that I1 = ( 1 ). If a 6= 0, then clearly the matrix A is invertible, with inverse matrix

A−1 = ( a−1 ) .

On the other hand, if a = 0, then clearly no matrix B can satisfy AB = BA = I1, so that the matrix A
is not invertible. We therefore conclude that the value a is a good “determinant” to determine whether
the 1× 1 matrix A is invertible, since the matrix A is invertible if and only if a 6= 0.

Let us then agree on the following definition.

Definition. Suppose that

A = ( a )

is a 1× 1 matrix. We write

det(A) = a,

and call this the determinant of the matrix A.
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Next, let us turn to 2× 2 matrices, of the form

A =
(
a b
c d

)
.

We shall use elementary row operations to find out when the matrix A is invertible. So we consider the
array

(A|I2) =
(
a b 1 0
c d 0 1

)
, (1)

and try to use elementary row operations to reduce the left hand half of the array to I2. Suppose first
of all that a = c = 0. Then the array becomes(

0 b 1 0
0 d 0 1

)
,

and so it is impossible to reduce the left hand half of the array by elementary row operations to the
matrix I2. Consider next the case a 6= 0. Multiplying row 2 of the array (1) by a, we obtain(

a b 1 0
ac ad 0 a

)
.

Adding −c times row 1 to row 2, we obtain(
a b 1 0
0 ad− bc −c a

)
. (2)

If D = ad− bc = 0, then this becomes (
a b 1 0
0 0 −c a

)
,

and so it is impossible to reduce the left hand half of the array by elementary row operations to the
matrix I2. On the other hand, if D = ad− bc 6= 0, then the array (2) can be reduced by elementary row
operations to (

1 0 d/D −b/D
0 1 −c/D a/D

)
,

so that

A−1 =
1

ad− bc
(
d −b
−c a

)
.

Consider finally the case c 6= 0. Interchanging rows 1 and 2 of the array (1), we obtain(
c d 0 1
a b 1 0

)
.

Multiplying row 2 of the array by c, we obtain(
c d 0 1
ac bc c 0

)
.

Adding −a times row 1 to row 2, we obtain(
c d 0 1
0 bc− ad c −a

)
.
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Multiplying row 2 by −1, we obtain (
c d 0 1
0 ad− bc −c a

)
. (3)

Again, if D = ad− bc = 0, then this becomes(
c d 0 1
0 0 −c a

)
,

and so it is impossible to reduce the left hand half of the array by elementary row operations to the
matrix I2. On the other hand, if D = ad− bc 6= 0, then the array (3) can be reduced by elementary row
operations to (

1 0 d/D −b/D
0 1 −c/D a/D

)
,

so that

A−1 =
1

ad− bc
(
d −b
−c a

)
.

Finally, note that a = c = 0 is a special case of ad− bc = 0. We therefore conclude that the value ad− bc
is a good “determinant” to determine whether the 2 × 2 matrix A is invertible, since the matrix A is
invertible if and only if ad− bc 6= 0.

Let us then agree on the following definition.

Definition. Suppose that

A =
(
a b
c d

)
is a 2× 2 matrix. We write

det(A) = ad− bc,

and call this the determinant of the matrix A.

3.2. Determinants for Square Matrices of Higher Order

If we attempt to repeat the argument for 2 × 2 matrices to 3 × 3 matrices, then it is very likely that
we shall end up in a mess with possibly no firm conclusion. Try the argument on 4× 4 matrices if you
must. Those who have their feet firmly on the ground will try a different approach.

Our approach is inductive in nature. In other words, we shall define the determinant of 2×2 matrices in
terms of determinants of 1×1 matrices, define the determinant of 3×3 matrices in terms of determinants
of 2 × 2 matrices, define the determinant of 4 × 4 matrices in terms of determinants of 3 × 3 matrices,
and so on.

Suppose now that we have defined the determinant of (n− 1)× (n− 1) matrices. Let

A =

 a11 . . . a1n
...

...
an1 . . . ann

 (4)
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be an n × n matrix. For every i, j = 1, . . . , n, let us delete row i and column j of A to obtain the
(n− 1)× (n− 1) matrix

Aij =



a11 . . . a1(j−1) • a1(j+1) . . . a1n

...
...

...
...

...
a(i−1)1 . . . a(i−1)(j−1) • a(i−1)(j+1) . . . a(i−1)n

• . . . • • • . . . •
a(i+1)1 . . . a(i+1)(j−1) • a(i+1)(j+1) . . . a(i+1)n

...
...

...
...

...
an1 . . . an(j−1) • an(j+1) . . . ann


. (5)

Here • denotes that the entry has been deleted.

Definition. The number Cij = (−1)i+j det(Aij) is called the cofactor of the entry aij of A. In other
words, the cofactor of the entry aij is obtained from A by first deleting the row and the column containing
the entry aij , then calculating the determinant of the resulting (n − 1) × (n − 1) matrix, and finally
multiplying by a sign (−1)i+j .

Note that the entries of A in row i are given by

( ai1 . . . ain ) .

Definition. By the cofactor expansion of A by row i, we mean the expression

n∑
j=1

aijCij = ai1Ci1 + . . .+ ainCin. (6)

Note that the entries of A in column j are given by a1j

...
anj

 .

Definition. By the cofactor expansion of A by column j, we mean the expression

n∑
i=1

aijCij = a1jC1j + . . .+ anjCnj . (7)

We shall state without proof the following important result. The interested reader is referred to
Section 3.8 for further discussion.

PROPOSITION 3A. Suppose that A is an n × n matrix given by (4). Then the expressions (6) and
(7) are all equal and independent of the row or column chosen.

Definition. Suppose that A is an n× n matrix given by (4). We call the common value in (6) and (7)
the determinant of the matrix A, denoted by det(A).
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Let us check whether this agrees with our earlier definition of the determinant of a 2 × 2 matrix.
Writing

A =
(
a11 a12

a21 a22

)
,

we have

C11 = a22, C12 = −a21, C21 = −a12, C22 = a11.

It follows that

by row 1 : a11C11 + a12C12 = a11a22 − a12a21,

by row 2 : a21C21 + a22C22 = −a21a12 + a22a11,

by column 1 : a11C11 + a21C21 = a11a22 − a21a12,

by column 2 : a12C12 + a22C22 = −a12a21 + a22a11.

The four values are clearly equal, and of the form ad− bc as before.

Example 3.2.1. Consider the matrix

A =

 2 3 5
1 4 2
2 1 5

 .

Let us use cofactor expansion by row 1. Then

C11 = (−1)1+1 det
(

4 2
1 5

)
= (−1)2(20− 2) = 18,

C12 = (−1)1+2 det
(

1 2
2 5

)
= (−1)3(5− 4) = −1,

C13 = (−1)1+3 det
(

1 4
2 1

)
= (−1)4(1− 8) = −7,

so that

det(A) = a11C11 + a12C12 + a13C13 = 36− 3− 35 = −2.

Alternatively, let us use cofactor expansion by column 2. Then

C12 = (−1)1+2 det
(

1 2
2 5

)
= (−1)3(5− 4) = −1,

C22 = (−1)2+2 det
(

2 5
2 5

)
= (−1)4(10− 10) = 0,

C32 = (−1)3+2 det
(

2 5
1 2

)
= (−1)5(4− 5) = 1,

so that

det(A) = a12C12 + a22C22 + a32C32 = −3 + 0 + 1 = −2.

When using cofactor expansion, we should choose a row or column with as few non-zero entries as
possible in order to minimize the calculations.
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Example 3.2.2. Consider the matrix

A =


2 3 0 5
1 4 0 2
5 4 8 5
2 1 0 5

 .

Here it is convenient to use cofactor expansion by column 3, since then

det(A) = a13C13 + a23C23 + a33C33 + a43C43 = 8C33 = 8(−1)3+3 det

 2 3 5
1 4 2
2 1 5

 = −16,

in view of Example 3.2.1.

3.3. Some Simple Observations

In this section, we shall describe two simple observations which follow immediately from the definition
of the determinant by cofactor expansion.

PROPOSITION 3B. Suppose that a square matrix A has a zero row or has a zero column. Then
det(A) = 0.

Proof. We simply use cofactor expansion by the zero row or zero column. ©

Definition. Consider an n× n matrix

A =

 a11 . . . a1n
...

...
an1 . . . ann

 .

If aij = 0 whenever i > j, then A is called an upper triangular matrix. If aij = 0 whenever i < j, then
A is called a lower triangular matrix. We also say that A is a triangular matrix if it is upper triangular
or lower triangular.

Example 3.3.1. The matrix  1 2 3
0 4 5
0 0 6


is upper triangular.

Example 3.3.2. A diagonal matrix is both upper triangular and lower triangular.

PROPOSITION 3C. Suppose that the n× n matrix

A =

 a11 . . . a1n
...

...
an1 . . . ann


is triangular. Then det(A) = a11a22 . . . ann, the product of the diagonal entries.
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Proof. Let us assume that A is upper triangular – for the case when A is lower triangular, change the
term “left-most column” to the term “top row” in the proof. Using cofactor expansion by the left-most
column at each step, we see that

det(A) = a11 det

 a22 . . . a2n
...

...
an2 . . . ann

 = a11a22 det

 a33 . . . a3n
...

...
an3 . . . ann

 = . . . = a11a22 . . . ann

as required. ©

3.4. Elementary Row Operations

We now study the effect of elementary row operations on determinants. Recall that the elementary row
operations that we consider are: (1) interchanging two rows; (2) adding a multiple of one row to another
row; and (3) multiplying one row by a non-zero constant.

PROPOSITION 3D. (ELEMENTARY ROW OPERATIONS) Suppose that A is an n× n matrix.
(a) Suppose that the matrix B is obtained from the matrix A by interchanging two rows of A. Then

det(B) = −det(A).
(b) Suppose that the matrix B is obtained from the matrix A by adding a multiple of one row of A to

another row. Then det(B) = det(A).
(c) Suppose that the matrix B is obtained from the matrix A by multiplying one row of A by a non-zero

constant c. Then det(B) = cdet(A).

Sketch of Proof. (a) The proof is by induction on n. It is easily checked that the result holds when
n = 2. When n > 2, we use cofactor expansion by a third row, say row i. Then

det(B) =
n∑
j=1

aij(−1)i+j det(Bij).

Note that the (n − 1) × (n − 1) matrices Bij are obtained from the matrices Aij by interchanging two
rows of Aij , so that det(Bij) = −det(Aij). It follows that

det(B) = −
n∑
j=1

aij(−1)i+j det(Aij) = −det(A)

as required.

(b) Again, the proof is by induction on n. It is easily checked that the result holds when n = 2. When
n > 2, we use cofactor expansion by a third row, say row i. Then

det(B) =
n∑
j=1

aij(−1)i+j det(Bij).

Note that the (n− 1)× (n− 1) matrices Bij are obtained from the matrices Aij by adding a multiple of
one row of Aij to another row, so that det(Bij) = det(Aij). It follows that

det(B) =
n∑
j=1

aij(−1)i+j det(Aij) = det(A)

as required.
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(c) This is simpler. Suppose that the matrix B is obtained from the matrix A by multiplying row i of
A by a non-zero constant c. Then

det(B) =
n∑
j=1

caij(−1)i+j det(Bij).

Note now that Bij = Aij , since row i has been removed respectively from B and A. It follows that

det(B) =
n∑
j=1

caij(−1)i+j det(Aij) = cdet(A)

as required. ©

In fact, the above operations can also be carried out on the columns of A. More precisely, we have
the following result.

PROPOSITION 3E. (ELEMENTARY COLUMN OPERATIONS) Suppose that A is an n×n matrix.
(a) Suppose that the matrix B is obtained from the matrix A by interchanging two columns of A. Then

det(B) = −det(A).
(b) Suppose that the matrix B is obtained from the matrix A by adding a multiple of one column of A

to another column. Then det(B) = det(A).
(c) Suppose that the matrix B is obtained from the matrix A by multiplying one column of A by a

non-zero constant c. Then det(B) = cdet(A).

Elementary row and column operations can be combined with cofactor expansion to calculate the
determinant of a given matrix. We shall illustrate this point by the following examples.

Example 3.4.1. Consider the matrix

A =


2 3 2 5
1 4 1 2
5 4 4 5
2 2 0 4

 .

Adding −1 times column 3 to column 1, we have

det(A) = det


0 3 2 5
0 4 1 2
1 4 4 5
2 2 0 4

 .

Adding −1/2 times row 4 to row 3, we have

det(A) = det


0 3 2 5
0 4 1 2
0 3 4 3
2 2 0 4

 .

Using cofactor expansion by column 1, we have

det(A) = 2(−1)4+1 det

 3 2 5
4 1 2
3 4 3

 = −2 det

 3 2 5
4 1 2
3 4 3

 .

Adding −1 times row 1 to row 3, we have

det(A) = −2 det

 3 2 5
4 1 2
0 2 −2

 .
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Adding 1 times column 2 to column 3, we have

det(A) = −2 det

 3 2 7
4 1 3
0 2 0

 .

Using cofactor expansion by row 3, we have

det(A) = −2 · 2(−1)3+2 det
(

3 7
4 3

)
= 4 det

(
3 7
4 3

)
.

Using the formula for the determinant of 2 × 2 matrices, we conclude that det(A) = 4(9 − 28) = −76.
Let us start again and try a different way. Dividing row 4 by 2, we have

det(A) = 2 det


2 3 2 5
1 4 1 2
5 4 4 5
1 1 0 2

 .

Adding −1 times row 4 to row 2, we have

det(A) = 2 det


2 3 2 5
0 3 1 0
5 4 4 5
1 1 0 2

 .

Adding −3 times column 3 to column 2, we have

det(A) = 2 det


2 −3 2 5
0 0 1 0
5 −8 4 5
1 1 0 2

 .

Using cofactor expansion by row 2, we have

det(A) = 2 · 1(−1)2+3 det

 2 −3 5
5 −8 5
1 1 2

 = −2 det

 2 −3 5
5 −8 5
1 1 2

 .

Adding −2 times row 3 to row 1, we have

det(A) = −2 det

 0 −5 1
5 −8 5
1 1 2

 .

Adding −5 times row 3 to row 2, we have

det(A) = −2 det

 0 −5 1
0 −13 −5
1 1 2

 .

Using cofactor expansion by column 1, we have

det(A) = −2 · 1(−1)3+1 det
( −5 1
−13 −5

)
= −2 det

( −5 1
−13 −5

)
.

Using the formula for the determinant of 2× 2 matrices, we conclude that det(A) = −2(25 + 13) = −76.
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Example 3.4.2. Consider the matrix

A =


2 1 0 1 3
2 3 1 2 5
4 7 2 3 7
1 0 1 1 3
2 1 0 2 0

 .

Here we have the least number of non-zero entries in column 3, so let us work to get more zeros into this
column. Adding −1 times row 4 to row 2, we have

det(A) = det


2 1 0 1 3
1 3 0 1 2
4 7 2 3 7
1 0 1 1 3
2 1 0 2 0

 .

Adding −2 times row 4 to row 3, we have

det(A) = det


2 1 0 1 3
1 3 0 1 2
2 7 0 1 1
1 0 1 1 3
2 1 0 2 0

 .

Using cofactor expansion by column 3, we have

det(A) = 1(−1)4+3 det


2 1 1 3
1 3 1 2
2 7 1 1
2 1 2 0

 = − det


2 1 1 3
1 3 1 2
2 7 1 1
2 1 2 0

 .

Adding −1 times column 3 to column 1, we have

det(A) = −det


1 1 1 3
0 3 1 2
1 7 1 1
0 1 2 0

 .

Adding −1 times row 1 to row 3, we have

det(A) = −det


1 1 1 3
0 3 1 2
0 6 0 −2
0 1 2 0

 .

Using cofactor expansion by column 1, we have

det(A) = −1(−1)1+1 det

 3 1 2
6 0 −2
1 2 0

 = −det

 3 1 2
6 0 −2
1 2 0

 .

Adding 1 times row 1 to row 2, we have

det(A) = −det

 3 1 2
9 1 0
1 2 0

 .
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Using cofactor expansion by column 3, we have

det(A) = −2(−1)1+3 det
(

9 1
1 2

)
= −2 det

(
9 1
1 2

)
.

Using the formula for the determinant of 2× 2 matrices, we conclude that det(A) = −2(18− 1) = −34.

Example 3.4.3. Consider the matrix

A =


1 0 2 4 1 0
2 4 5 7 6 2
4 6 1 9 2 1
3 5 0 1 2 5
2 4 5 3 6 2
1 0 2 5 1 0

 .

Here note that rows 1 and 6 are almost identical. Adding −1 times row 1 to row 6, we have

det(A) = det


1 0 2 4 1 0
2 4 5 7 6 2
4 6 1 9 2 1
3 5 0 1 2 5
2 4 5 3 6 2
0 0 0 1 0 0

 .

Adding −1 times row 5 to row 2, we have

det(A) = det


1 0 2 4 1 0
0 0 0 4 0 0
4 6 1 9 2 1
3 5 0 1 2 5
2 4 5 3 6 2
0 0 0 1 0 0

 .

Adding −4 times row 6 to row 2, we have

det(A) = det


1 0 2 4 1 0
0 0 0 0 0 0
4 6 1 9 2 1
3 5 0 1 2 5
2 4 5 3 6 2
0 0 0 1 0 0

 .

It follows from Proposition 3B that det(A) = 0.

3.5. Further Properties of Determinants

Definition. Consider the n× n matrix

A =

 a11 . . . a1n
...

...
an1 . . . ann

 .

By the transpose At of A, we mean the matrix

At =

 a11 . . . an1
...

...
a1n . . . ann
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obtained from A by transposing rows and columns.

Example 3.5.1. Consider the matrix

A =

 1 2 3
4 5 6
7 8 9

 .

Then

At =

 1 4 7
2 5 8
3 6 9

 .

Recall that determinants of 2×2 matrices depend on determinants of 1×1 matrices; in turn, determi-
nants of 3×3 matrices depend on determinants of 2×2 matrices, and so on. It follows that determinants
of n × n matrices ultimately depend on determinants of 1 × 1 matrices. Note now that transposing a
1× 1 matrix does not affect its determinant (why?). The result below follows in view of Proposition 3A.

PROPOSITION 3F. For every n× n matrix A, we have det(At) = det(A).

Example 3.5.2. We have

det


2 2 4 1 2
1 3 7 0 1
0 1 2 1 0
1 2 3 1 2
3 5 7 3 0

 = det


2 1 0 1 3
2 3 1 2 5
4 7 2 3 7
1 0 1 1 3
2 1 0 2 0

 = −34.

Next, we shall study the determinant of a product. In Section 3.8, we shall sketch a proof of the
following important result.

PROPOSITION 3G. For every n× n matrices A and B, we have det(AB) = det(A) det(B).

PROPOSITION 3H. Suppose that the n× n matrix A is invertible. Then

det(A−1) =
1

det(A)
.

Proof. In view of Propositions 3G and 3C, we have det(A) det(A−1) = det(In) = 1. The result follows
immediately. ©

Finally, the main reason for studying determinants, as outlined in the introduction, is summarized by
the following result.

PROPOSITION 3J. Suppose that A is an n×n matrix. Then A is invertible if and only if det(A) 6= 0.

Proof. Suppose that A is invertible. Then det(A) 6= 0 follows immediately from Proposition 3H.
Suppose now that det(A) 6= 0. Let us now reduce A by elementary row operations to reduced row
echelon form B. Then there exist a finite sequence E1, . . . , Ek of elementary n× n matrices such that

B = Ek . . . E1A.

It follows from Proposition 3G that

det(B) = det(Ek) . . . det(E1) det(A).
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Recall that all elementary matrices are invertible and so have non-zero determinants. It follows that
det(B) 6= 0, so that B has no zero rows by Proposition 3B. Since B is an n× n matrix in reduced row
echelon form, it must be In. We therefore conclude that A is row equivalent to In. It now follows from
Proposition 2N(c) that A is invertible. ©

Combining Propositions 2Q and 3J, we have the following result.

PROPOSITION 3K. In the notation of Proposition 2N, the following statements are equivalent:
(a) The matrix A is invertible.
(b) The system Ax = 0 of linear equations has only the trivial solution.
(c) The matrices A and In are row equivalent.
(d) The system Ax = b of linear equations is soluble for every n× 1 matrix b.
(e) The determinant det(A) 6= 0.

3.6. Application to Curves and Surfaces

A special case of Proposition 3K states that a homogeneous system of n linear equations in n variables
has a non-trivial solution if and only if the determinant if the coefficient matrix is equal to zero. In this
section, we shall use this to solve some problems in geometry. We illustrate our ideas by a few simple
examples.

Example 3.6.1. Suppose that we wish to determine the equation of the unique line on the xy-plane that
passes through two distinct given points (x1, y1) and (x2, y2). The equation of a line on the xy-plane is
of the form ax + by + c = 0. Since the two points lie on the line, we must have ax1 + by1 + c = 0 and
ax2 + by2 + c = 0. Hence

xa+ yb+ c = 0,
x1a+ y1b+ c = 0,
x2a+ y2b+ c = 0.

Written in matrix notation, we have x y 1
x1 y1 1
x2 y2 1

 a
b
c

 =

 0
0
0

 .

Clearly there is a non-trivial solution (a, b, c) to this system of linear equations, and so we must have

det

 x y 1
x1 y1 1
x2 y2 1

 = 0,

the equation of the line required.

Example 3.6.2. Suppose that we wish to determine the equation of the unique circle on the xy-plane
that passes through three distinct given points (x1, y1), (x2, y2) and (x3, y3), not all lying on a straight
line. The equation of a circle on the xy-plane is of the form a(x2 + y2) + bx+ cy+d = 0. Since the three
points lie on the circle, we must have a(x2

1 + y2
1) + bx1 + cy1 + d = 0, a(x2

2 + y2
2) + bx2 + cy2 + d = 0, and

a(x2
3 + y2

3) + bx3 + cy3 + d = 0. Hence

(x2 + y2)a+ xb+ yc+ d = 0,
(x2

1 + y2
1)a+ x1b+ y1c+ d = 0,

(x2
2 + y2

2)a+ x2b+ y2c+ d = 0,
(x2

3 + y2
3)a+ x3b+ y3c+ d = 0.
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Written in matrix notation, we have
x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1



a
b
c
d

 =


0
0
0
0

 .

Clearly there is a non-trivial solution (a, b, c, d) to this system of linear equations, and so we must have

det


x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

 = 0,

the equation of the circle required.

Example 3.6.3. Suppose that we wish to determine the equation of the unique plane in 3-space that
passes through three distinct given points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3), not all lying on a
straight line. The equation of a plane in 3-space is of the form ax + by + cz + d = 0. Since the
three points lie on the plane, we must have ax1 + by1 + cz1 + d = 0, ax2 + by2 + cz2 + d = 0, and
ax3 + by3 + cz3 + d = 0. Hence

xa+ yb+ zc+ d = 0,
x1a+ y1b+ z1c+ d = 0,
x2a+ y2b+ z2c+ d = 0,
x3a+ y3b+ z3c+ d = 0.

Written in matrix notation, we have
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1



a
b
c
d

 =


0
0
0
0

 .

Clearly there is a non-trivial solution (a, b, c, d) to this system of linear equations, and so we must have

det


x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

 = 0,

the equation of the plane required.

Example 3.6.4. Suppose that we wish to determine the equation of the unique sphere in 3-space that
passes through four distinct given points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x4, y4, z4), not all lying
on a plane. The equation of a sphere in 3-space is of the form a(x2 + y2 + z2) + bx + cy + dz + e = 0.
Since the four points lie on the sphere, we must have

a(x2
1 + y2

1 + z2
1) + bx1 + cy1 + dz1 + e = 0,

a(x2
2 + y2

2 + z2
2) + bx2 + cy2 + dz2 + e = 0,

a(x2
3 + y2

3 + z2
3) + bx3 + cy3 + dz3 + e = 0,

a(x2
4 + y2

4 + z2
4) + bx4 + cy4 + dz4 + e = 0.

Hence

(x2 + y2 + z2)a+ xb+ yc+ zd+ e = 0,
(x2

1 + y2
1 + z2

1)a+ x1b+ y1c+ z1d+ e = 0,
(x2

2 + y2
2 + z2

2)a+ x2b+ y2c+ z2d+ e = 0,
(x2

3 + y2
3 + z2

3)a+ x3b+ y3c+ z3d+ e = 0,
(x2

4 + y2
4 + z2

4)a+ x4b+ y4c+ z4d+ e = 0.
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Written in matrix notation, we have
x2 + y2 + z2 x y z 1
x2

1 + y2
1 + z2

1 x1 y1 z1 1
x2

2 + y2
2 + z2

2 x2 y2 z2 1
x2

3 + y2
3 + z2

3 x3 y3 z3 1
x2

4 + y2
4 + z2

4 x4 y4 z4 1



a
b
c
d
e

 =


0
0
0
0
0

 .

Clearly there is a non-trivial solution (a, b, c, d, e) to this system of linear equations, and so we must have

det


x2 + y2 + z2 x y z 1
x2

1 + y2
1 + z2

1 x1 y1 z1 1
x2

2 + y2
2 + z2

2 x2 y2 z2 1
x2

3 + y2
3 + z2

3 x3 y3 z3 1
x2

4 + y2
4 + z2

4 x4 y4 z4 1

 = 0,

the equation of the sphere required.

3.7. Some Useful Formulas

In this section, we shall discuss two very useful formulas which involve determinants only. The first one
enables us to find the inverse of a matrix, while the second one enables us to solve a system of linear
equations. The interested reader is referred to Section 3.8 for proofs.

Recall first of all that for any n× n matrix

A =

 a11 . . . a1n
...

...
an1 . . . ann

 ,

the number Cij = (−1)i+j det(Aij) is called the cofactor of the entry aij , and the (n−1)×(n−1) matrix

Aij =



a11 . . . a1(j−1) • a1(j+1) . . . a1n

...
...

...
...

...
a(i−1)1 . . . a(i−1)(j−1) • a(i−1)(j+1) . . . a(i−1)n

• . . . • • • . . . •
a(i+1)1 . . . a(i+1)(j−1) • a(i+1)(j+1) . . . a(i+1)n

...
...

...
...

...
an1 . . . an(j−1) • an(j+1) . . . ann


is obtained from A by deleting row i and column j; here • denotes that the entry has been deleted.

Definition. The n× n matrix

adj(A) =

 C11 . . . Cn1
...

...
C1n . . . Cnn


is called the adjoint of the matrix A.

Remark. Note that adj(A) is obtained from the matrix A first by replacing each entry of A by its
cofactor and then by transposing the resulting matrix.
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PROPOSITION 3L. Suppose that the n× n matrix A is invertible. Then

A−1 =
1

det(A)
adj(A).

Example 3.7.1. Consider the matrix

A =

 1 −1 0
0 1 2
2 0 3

 .

Then

adj(A) =


det
(

1 2
0 3

)
−det

(−1 0
0 3

)
det
(−1 0

1 2

)
−det

(
0 2
2 3

)
det
(

1 0
2 3

)
−det

(
1 0
0 2

)
det
(

0 1
2 0

)
−det

(
1 −1
2 0

)
det
(

1 −1
0 1

)

 =

 3 3 −2
4 3 −2
−2 −2 1

 .

On the other hand, adding 1 times column 1 to column 2 and then using cofactor expansion on row 1,
we have

det(A) = det

 1 −1 0
0 1 2
2 0 3

 = det

 1 0 0
0 1 2
2 2 3

 = det
(

1 2
2 3

)
= −1.

It follows that

A−1 =

−3 −3 2
−4 −3 2
2 2 −1

 .

Next, we turn our attention to systems of n linear equations in n unknowns, of the form

a11x1 + . . .+ a1nxn = b1,

...
an1x1 + . . .+ annxn = bn,

represented in matrix notation in the form

Ax = b,

where

A =

 a11 . . . a1n
...

...
an1 . . . ann

 and b =

 b1
...
bn

 (8)

represent the coefficients and

x =

 x1
...
xn

 (9)

represents the variables.
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For every j = 1, . . . , k, write

Aj(b) =

 a11 . . . a1(j−1) b1 a1(j+1) . . . a1n

...
...

...
...

...
an1 . . . an(j−1) bn an(j+1) . . . ann

 ; (10)

in other words, we replace column j of the matrix A by the column b.

PROPOSITION 3M. (CRAMER’S RULE) Suppose that the matrix A is invertible. Then the unique
solution of the system Ax = b, where A, x and b are given by (8) and (9), is given by

x1 =
det(A1(b))

det(A)
, . . . , xn =

det(An(b))
det(A)

,

where the matrices A1(b), . . . , A1(b) are defined by (10).

Example 3.7.2. Consider the system Ax = b, where

A =

 1 −1 0
0 1 2
2 0 3

 and b =

 1
2
3

 .

Recall that det(A) = −1. By Cramer’s rule, we have

x1 =

det

 1 −1 0
2 1 2
3 0 3


det(A)

= −3, x2 =

det

 1 1 0
0 2 2
2 3 3


det(A)

= −4, x3 =

det

 1 −1 1
0 1 2
2 0 3


det(A)

= 3.

Let us check our calculations. Recall from Example 3.7.1 that

A−1 =

−3 −3 2
−4 −3 2
2 2 −1

 .

We therefore have x1

x2

x3

 =

−3 −3 2
−4 −3 2
2 2 −1

 1
2
3

 =

−3
−4
3

 .

3.8. Further Discussion

In this section, we shall first discuss a definition of the determinant in terms of permutations. In order
to do so, we need to make a digression and discuss first the rudiments of permutations on non-empty
finite sets.

Definition. Let X be a non-empty finite set. A permutation φ on X is a function φ : X → X which is
one-to-one and onto. If x ∈ X, we denote by xφ the image of x under the permutation φ.

It is not difficult to see that if φ : X → X and ψ : X → X are both permutations on X, then
φψ : X → X, defined by xφψ = (xφ)ψ for every x ∈ X so that φ is followed by ψ, is also a permutation
on X.
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Remark. Note that we use the notation xφ instead of our usual notation φ(x) to denote the image
of x under φ. Note also that we write φψ to denote the composition ψ ◦ φ. We shall do this only for
permutations. The reasons will become a little clearer later in the discussion.

Since the set X is non-empty and finite, we may assume, without loss of generality, that it is
{1, 2, . . . , n}, where n ∈ N. We now let Sn denote the set of all permutations on the set {1, 2, . . . , n}. In
other words, Sn denotes the collection of all functions from {1, 2, . . . , n} to {1, 2, . . . , n} that are both
one-to-one and onto.

PROPOSITION 3N. For every n ∈ N, the set Sn has n! elements.

Proof. There are n choices for 1φ. For each such choice, there are (n − 1) choices left for 2φ. And so
on. ©

To represent particular elements of Sn, there are various notations. For example, we can use the
notation (

1 2 . . . n
1φ 2φ . . . nφ

)
to denote the permutation φ.

Example 3.8.1. In S4, (
1 2 3 4
2 4 1 3

)
denotes the permutation φ, where 1φ = 2, 2φ = 4, 3φ = 1 and 4φ = 3. On the other hand, the reader
can easily check that (

1 2 3 4
2 4 1 3

)(
1 2 3 4
3 2 4 1

)
=
(

1 2 3 4
2 1 3 4

)
.

A more convenient way is to use the cycle notation. The permutations(
1 2 3 4
2 4 1 3

)
and

(
1 2 3 4
3 2 4 1

)
can be represented respectively by the cycles (1 2 4 3) and (1 3 4). Here the cycle (1 2 4 3) gives the
information 1φ = 2, 2φ = 4, 4φ = 3 and 3φ = 1. Note also that in the latter case, since the image of 2
is 2, it is not necessary to include this in the cycle. Furthermore, the information(

1 2 3 4
2 4 1 3

)(
1 2 3 4
3 2 4 1

)
=
(

1 2 3 4
2 1 3 4

)
can be represented in cycle notation by (1 2 4 3)(1 3 4) = (1 2). We also say that the cycles (1 2 4 3),
(1 3 4) and (1 2) have lengths 4, 3 and 2 respectively.

Example 3.8.2. In S6, the permutation(
1 2 3 4 5 6
2 4 1 3 6 5

)
can be represented in cycle notation as (1 2 4 3)(5 6).

Example 3.8.3. In S4 or S6, we have (1 2 4 3) = (1 2)(1 4)(1 3).
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The last example motivates the following important idea.

Definition. Suppose that n ∈ N. A permutation in Sn that interchanges two numbers among the
elements of {1, 2, . . . , n} and leaves all the others unchanged is called a transposition.

Remark. It is obvious that a transposition can be represented by a 2-cycle, and is its own inverse.

Definition. Two cycles (x1 x2 . . . xk) and (y1 y2 . . . yl) in Sn are said to be disjoint if the elements
x1, . . . , xk, y1, . . . , yl are all different.

The interested reader may try to prove the following result.

PROPOSITION 3P. Suppose that n ∈ N.
(a) Every permutation in Sn can be written as a product of disjoint cycles.
(b) For every subset {x1, x2, . . . , xk} of the set {1, 2, . . . , n}, where the elements x1, x2, . . . , xk are dis-

tinct, the cycle (x1 x2 . . . xk) satisfies

(x1 x2 . . . xk) = (x1 x2)(x1 x3) . . . (x1 xk);

in other words, every cycle can be written as a product of transpositions.
(c) Consequently, every permutation in Sn can be written as a product of transpositions.

Example 3.8.4. In S9, the permutation(
1 2 3 4 5 6 7 8 9
3 2 5 1 7 8 4 9 6

)
can be written in cycle notation as (1 3 5 7 4)(6 8 9). By Theorem 3P(b), we have

(1 3 5 7 4) = (1 3)(1 5)(1 7)(1 4) and (6 8 9) = (6 8)(6 9).

Hence the permutation can be represented by (1 3)(1 5)(1 7)(1 4)(6 8)(6 9).

Definition. Suppose that n ∈ N. Then a permutation in Sn is said to be even if it is representable as
the product of an even number of transpositions and odd if it is representable as the product of an odd
number of transpositions. Furthermore, we write

ε(φ) =
{

+1 if φ is even,
−1 if φ is odd.

Remark. It can be shown that no permutation can be simultaneously odd and even.

We are now in a position to define the determinant of a matrix. Suppose that

A =

 a11 . . . a1n
...

...
an1 . . . ann

 (11)

is an n× n matrix.

Definition. By an elementary product from the matrix A, we mean the product of n entries of A, no
two of which are from the same row or same column.

It follows that any such elementary product must be of the form

a1(1φ)a2(2φ) . . . an(nφ),

where φ is a permutation in Sn.
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Definition. By the determinant of an n× n matrix A of the form (11), we mean the sum

det(A) =
∑
φ∈Sn

ε(φ)a1(1φ)a2(2φ) . . . an(nφ), (12)

where the summation is over all the n! permutations φ in Sn.

It is be shown that the determinant defined in this way is the same as that defined earlier by row or
column expansions. Indeed, one can use (12) to establish Proposition 3A. The very interested reader
may wish to make an attempt. Here we confine our study to the special cases when n = 2 and n = 3.
In the two examples below, we use e to denote the identity permutation.

Example 3.8.5. Suppose that n = 2. We have the following:

elementary product permutation sign contribution

a11a22 e +1 +a11a22

a12a21 (1 2) −1 −a12a21

Hence det(A) = a11a22 − a12a21 as shown before.

Example 3.8.6. Suppose that n = 3. We have the following:

elementary product permutation sign contribution

a11a22a33 e +1 +a11a22a33

a12a23a31 (1 2 3) +1 +a12a23a31

a13a21a32 (1 3 2) +1 +a13a21a32

a13a22a31 (1 3) −1 −a13a22a31

a11a23a32 (2 3) −1 −a11a23a32

a12a21a33 (1 2) −1 −a12a21a33

Hence det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33. We have the
picture below:
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We are now in a position to define the determinant of a matrix. Suppose that

(11) A =

 a11 . . . a1n
...

...
an1 . . . ann


is an n× n matrix.

Definition. By an elementary product from the matrix A, we mean the product of n entries of A, no
two of which are from the same row or same column.

It follows that any such elementary product must be of the form

a1(1φ)a2(2φ) . . . an(nφ),

where φ is a permutation in Sn.

Definition. By the determinant of an n× n matrix A of the form (11), we mean the sum

(12) det(A) =
∑

φ∈Sn

ε(φ)a1(1φ)a2(2φ) . . . an(nφ),

where the summation is over all the n! permutations φ in Sn.

It is be shown that the determinant defined in this way is the same as that defined earlier by row or
column expansions. Indeed, one can use (12) to establish Proposition 3A. The very interested reader
may wish to make an attempt. Here we confine our study to the special cases when n = 2 and n = 3.
In the two examples below, we use e to denote the identity permutation.

Example 3.8.5. Suppose that n = 2. We have the following:

elementary product permutation sign contribution

a11a22 e +1 +a11a22

a12a21 (1 2) −1 −a12a21

Hence det(A) = a11a22 − a12a21 as shown before.

Example 3.8.6. Suppose that n = 3. We have the following:

elementary product permutation sign contribution

a11a22a33 e +1 +a11a22a33

a12a23a31 (1 2 3) +1 +a12a23a31

a13a21a32 (1 3 2) +1 +a13a21a32

a13a22a31 (1 3) −1 −a13a22a31

a11a23a32 (2 3) −1 −a11a23a32

a12a21a33 (1 2) −1 −a12a21a33

Hence det(A) = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33. We have the
picture below:

+ + + − − −

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32
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Next, we discuss briefly how one may prove Proposition 3G concerning the determinant of the product
of two matrices. The idea is to use elementary matrices. Corresponding to Proposition 3D, we can easily
establish the following result.

PROPOSITION 3Q. Suppose that E is an elementary matrix.
(a) If E arises from interchanging two rows of In, then det(E) = −1.
(b) If E arises from adding one row of In to another row, then det(E) = 1.
(c) If E arises from multiplying one row of In by a non-zero constant c, then det(E) = c.

Combining Propositions 3D and 3Q, we can establish the following intermediate result.
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PROPOSITION 3R. Suppose that E is an n× n elementary matrix. Then for any n× n matrix B,
we have det(EB) = det(E) det(B).

Proof of Proposition 3G. Let us reduce A by elementary row operations to reduced row echelon form
A′. Then there exist a finite sequence G1, . . . , Gk of elementary matrices such that A′ = Gk . . . G1A.
Since elementary matrices are invertible with elementary inverse matrices, it follows that there exist a
finite sequence E1, . . . , Ek of elementary matrices such that

A = E1 . . . EkA
′. (13)

Suppose first of all that det(A) = 0. Then it follows from (13) that the matrix A′ must have a zero row.
Hence A′B must have a zero row, and so det(A′B) = 0. But AB = E1 . . . Ek(A′B), so it follows from
Proposition 3R that det(AB) = 0. Suppose next that det(A) 6= 0. Then A′ = In, and so it follows from
(13) that AB = E1 . . . EkB. The result now follows on applying Proposition 3R. ©

We complete this chapter by establishing the two formulas discussed in Section 3.7.

Proof of Proposition 3L. It suffices to show that

A adj(A) = det(A)In, (14)

as this clearly implies

A

(
1

det(A)
adj(A)

)
= In,

giving the result. To show (14), note that

A adj(A) =

 a11 . . . a1n
...

...
an1 . . . ann

 C11 . . . Cn1
...

...
C1n . . . Cnn

 . (15)

Suppose that the right hand side of (15) is equal to

B =

 b11 . . . b1n
...

...
bn1 . . . bnn

 .

Then for every i, j = 1, . . . , n, we have

bij = ai1Cj1 + . . .+ ainCjn. (16)

It follows that when i = j, we have

bii = ai1Ci1 + . . .+ ainCin = det(A).

On the other hand, if i 6= j, then (16) is equal to the determinant of the matrix obtained from A by
replacing row j by row i. This matrix has therefore two identical rows, and so the determinant is 0
(why?). The identity (14) follows immediately. ©

Chapter 3 : Determinants page 21 of 24



Linear Algebra c© W W L Chen, 1982, 2008

Proof of Proposition 3M. Since A is invertible, it follows from Proposition 3L that

A−1 =
1

det(A)
adj(A).

By Proposition 2P, the unique solution of the system Ax = b is given by

x = A−1b =
1

det(A)
adj(A)b.

Written in full, this becomes x1
...
xn

 =
1

det(A)

 C11 . . . Cn1
...

...
C1n . . . Cnn

 b1
...
bn

 =
1

det(A)

 b1C11 + . . .+ bnCn1
...

b1C1n + . . .+ bnCnn

 .

Hence, for every j = 1, . . . , n, we have

xj =
b1C1j + . . .+ bnCnj

det(A)
.

To complete the proof, it remains to show that

b1C1j + . . .+ bnCnj = det(Aj(b)).

Note, on using cofactor expansion by column j, that

det(Aj(b)) =
n∑
i=1

bi(−1)i+j det



a11 . . . a1(j−1) • a1(j+1) . . . a1n

...
...

...
...

...
a(i−1)1 . . . a(i−1)(j−1) • a(i−1)(j+1) . . . a(i−1)n

• . . . • • • . . . •
a(i+1)1 . . . a(i+1)(j−1) • a(i+1)(j+1) . . . a(i+1)n

...
...

...
...

...
an1 . . . an(j−1) • an(j+1) . . . ann


=

n∑
i=1

bi(−1)i+j det(Aij) =
n∑
i=1

biCij

as required. ©
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Problems for Chapter 3

1. Compute the determinant of each of the matrices in Problem 2.6.

2. Find the determinant of each of the following matrices:

P =

 1 3 2
8 4 0
2 1 2

 , Q =

 1 1 −1
1 −1 1
−1 1 1

 , R =

 a a2 a3

b b2 b3

c c2 c3

 .

3. Find the determinant of the matrix 
3 4 5 2
1 0 1 0
2 3 6 3
7 2 9 4

 .

4. By using suitable elementary row and column operations as well as row and column expansions,
show that

det


2 3 7 1 3
2 3 7 1 5
2 3 6 1 9
4 6 2 3 4
5 8 7 4 5

 = 2.

[Remark: Note that rows 1 and 2 of the matrix are almost identical.]

5. By using suitable elementary row and column operations as well as row and column expansions,
show that

det


2 1 5 1 3
2 1 5 1 2
4 3 2 1 1
4 3 2 0 1
2 1 6 π 7

 = 2.

[Remark: The entry π is not a misprint!]

6. If A and B are square matrices of the same size and detA = 2 and detB = 3, find det(A2B−1).

7. a) Compute the Vandermonde determinants

det

 1 a a2

1 b b2

1 c c2

 and det


1 a a2 a3

1 b b2 b3

1 c c2 c3

1 d d2 d3

 .

b) Establish a formula for the Vandermonde determinant

det


1 a1 a2

1 . . . an−1
1

1 a2 a2
2 . . . an−1

2
...

...
...

...
1 an a2

n . . . an−1
n

 .
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8. Compute the determinant

det

 a b c
a+ x b+ x c+ x
a+ y b+ y c+ y

 .

9. For each of the matrices below, compute its adjoint and use Proposition 3L to calculate its inverse:

a)

 1 1 3
2 −2 1
0 1 0

 b)

 3 5 4
2 1 1
1 0 1


10. Use Cramer’s rule to solve the system of linear equations

2x1 + x2 + x3 = 4,
−x1 + 2x3 = 2,
3x1 + x2 + 3x3 = −2.
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