Chapter 7

Eigenvalues and Eigenvectors

7.1 Eigenvalues and Eigenvectors

Homework: [Textbook, §7.1 Ex. 5, 11, 15, 19, 25, 27, 61, 63, 65].

Optional Homework:[Textbook, §7.1 Ex. 53, 59].

In this section, we introduce eigenvalues and eigenvectors. This is
one of most fundamental and most useful concepts in linear algebra.
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Definition 7.1.1 Let A be an n X n matrix. A scalar A is said to be

a eigenvalue of A, if
Ax = Ax for some wector x# 0.

The vector x is called an eigenvector corresponding to A\. The zero

vector 0 is never an eigenvectors, by definition.

Reading assignment: Read [Textbook, Examples 1, 2, page 423].

7.1.1 Eigenspaces

Given a square matrix A, there will be many eigenvectors corresponding
to a given eigenvalue \. In fact, together with the zero vector 0, the
set of all eigenvectors corresponding to a given eigenvalue A will form
a subspace. We state the same as a theorem:

Theorem 7.1.2 Let A be an n X n matrix and A is an eigenvalue of
A. Then the set

E(\) ={0}uU{x:x is an eigenvector corresponding to A}

(of all eigenvalues corresponding to X\, together with 0) is a subspace of

R™. This subspace E()\) is called the eigenspace of \.

Proof. Since 0 € E(\), we have E()) is nonempty. Because of theorem
4.3.3, we need only to check that E()) is closed under addition and
scalar multiplication. Suppose x,y € E(\) and ¢ be a scalar. Then,

Ax =Ax and Ay = \y.

So,
Alx+y)=Ax+ Ay = Xx+ Ay = A(x+Yy).
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So, x+y is an eigenvalue corresponding to A or zero. So, x+y € E())
and F()) is closed under addition. Also,

A(cx) = ¢(Ax) = c(Ax) = A\(cx).

So, ex € E((A) and E(A) is closed under scalar multiplication. There-
fore, E(\) is a subspace of R™. The proof is complete. n

Reading assignment: Read [Textbook, Examples 3, page 423].

Theorem 7.1.3 Let A be a square matrix of size n x n. Then

1. Then a scalar A is an eigenvalue of A if and only if
det(AM — A) =0,
here I denotes the identity matrix.

2. A vector x is an eigenvector, of A, corresponding to A if and only

if x is a nozero solution
(M —A)x=0.

Proof. By definition, A is an eigenvalue of A if and only if, for some
nonzero x, we have

Ax =Xx = Ax < (M — A)x =0 < det(A\ — A) = 0.

The last equivalence is given by [Textbook, §3.3], which we did not
cover. This establishes (1) of the theorem. The proof of (2) is obvious
or same as that of (1). This completes the proof. ]

Definition 7.1.4 Let A be a square matrix of size n x n. Then the
equation

det(A\] —A)=0
is called the characteristic equation of A. (The German word ’eigen’

roughly means 'characteristic’.)
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1. Using induction and expanding det((A — A), it follows that
det(A\ — A) = A" + ¢, A"+ e A+ ¢,

which is a polynomial in A, of degree n. This polynomial is called

the characteristic polynomial of A.

2. If

113 Q12 Az - Qin

Q21 Q22 Q23 - Q2p

A= a3;r az2 a3z - A3p

| Am1 Gm2 Am3  *° Amn
then
A —ap —Q12 —a13 Tt —Q1n
—a21 A — ag —Q23 s —Q2n
()\I - A) = —asi —a32 A—asg - —a3n
| —On1 —Qn2 —Qn3 A= Qpp

So, the characteristic polynomial is the determinant of this ma-

trix.

Method of finding eigenvalues and eigenvectors is as follows: Let
A be an n x n matrix.

1. To find the eigenvalues of A solve the characteristic equation
det(A\] — A) =0.

This is a polynomial equation in A of degree n. We only consider
real roots of this equation, in this class.
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2. Given an eigenvalue \; (i.e. a root of the characteristic equation),
to find the eigenspace E();), corresponding to \;, we solve the
linear system

As usual, to solve this we reduce it to the row echelon form or
Gauss-Jordan form. Since J; is an eigenvalue, at least one row of
the echlon form will be zero.

Reading assignment: Read [Textbook, Examples 4-7, page 426-|.

Exercise 7.1.5 (Ex. 6, p. 432) Let

-2 2 =3
A= 2 1 -6
-1 -2 0

1. Verify that \; = 5 is a eigenvalue of A and x; = (1,2,—1)T is a

corresponding eigenvector.

Solution: We need to check Ax; = 5x;, We have

-2 2 -3 1 5
Ax; = 2 1 —6 21 =1] 10| =5 2 | = 5x;.
-1 =2 0 -1 -5 -1

So, assertion is verified.

2. Verify that Ay = —3 is a eigenvalue of A and x5 = (—2,1,0)7 is

a corresponding eigenvector.

Solution: We need to check Axy = —3x5, We have

—2 2 =3 —2 6 —2
-1 -2 0 0 0 0

So, assertion is verified.
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3. Verify that A\3 = —3 is a eigenvalue of A and x3 = (3,0,1)7 is a

corresponding eigenvector.

Solution: We need to check Axz = —3x3, We have

-2 2 =3 3 -9
AX3 = 2 1 -6 0 - 0 =-3 0 = —3X3.
-1 -2 0 1 -3

So, assertion is verified.

Exercise 7.1.6 (Ex. 14, p. 433) Let

1 05
A=10 -2 4
1 =29

1. Determine whether x = (1,1,0)7 is an eigenvector of A.

Solution: We have

1 0 5 1 1 1
Ax=1]10 -2 4 1| =] -21]#A
1 -2 9 0 —1 0

for all A\. So, x is not an eigenvector of A.

2. Determine whether x = (—5,2,1)7 is an eigenvector of A.

Solution: We have

1 0 5 -5 0 -5
Ax=|0 -2 4 21=101]1=0 2 | =0x..
1 =29 1

So, x is an eigenvector and corresponding eigenvalue is A = 0.
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3. Determine whether x = (0,0,0)7 is an eigenvector of A.

Solution: No, 0 is, by definition, never an eigenvector.

4. Determine whether x = (2\/6— 3, —2v6+6, 3)T is an eigenvector
of A.

Solution: We have

1 05 26 —3 26 + 12 26— 3
Ax =10 -2 4 —06+6 | = 46 | M| =26 +6
1 -2 9 3 66 + 12 3

So, x is not an eigenvector of A.

Exercise 7.1.7 (Ex. 20, p. 433) Let

-5 00
A= 3 70
4 =2 3

1. Find the characteristic equation of A.

Solution: The characteristic polynomial is

A+5 0 0
det(A\ — A) = -3 A—T 0=OA+5)A=T7)(A—3).
—4 2 A—3

So, the characteristic equation is
A+5)A=7T)(A—3)=0.

2. Find eigenvalues (and corresponding eigenvectors) of A.

Solution: Solving the characteristic equation, the eigenvalues
are A = —5,7,3.
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To find an eigenvector corresponding to A = —5, wehave to
solve (=51 — A)x =0 or

0 0 O x 0
-3 =12 0 y| =10
—4 2 =8 z 0
Solving, we get
16t 4t t
r=—— = — z =t
R

So, that eigenspace of A = —5 is

16 4
— Ut —tt) i teR}.
{5eaee) o)

In particular, with ¢ = 1, an eigenvector, for eigenvalue A =
: 16 4 1\T

—5, 1S (—?, 9 ].) .

To find an eigenvector corresponding to A = 7, wehave to

solve (7] — A)x =0 or

12007 [z
3 00| |y|=
—4 2 4

Solving, we get

So, that eigenspace of A = 7 is
{(0,—-2t,t) : t € R}.

In particular, with ¢ = 1, an eigenvector, for eigenvalue A\ =
7,is (0,—2,1)" .
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(c¢) To find an eigenvector corresponding to A = 3, wehave to
solve (3] — A)x =0 or

8 00 T 0
-3 —4 0 yl =10
—4 2 0 z 0

Solving, we get

So, that eigenspace of A = 3 is
{(0,0,t) : t € R}.

In particular, with ¢ = 1, an eigenvector, for eigenvalue A\ =
3,is (0,0,1)".

Exercise 7.1.8 (Ex. 66, p. 435) Let

X

Il
o o w
o w o~
W o=

Find the dimension of the eigenspace corresponding to the eigenvalue

A=3.

Solution: The eigenspace E(3) is the solution space of the system
(3] — A)x =x, or

3—3 —1 —1 x 0 0 -1 —1 x
0 3—-3 —1 y | =10 or 0 0 -1
0 0 3—-3 z 0 0O 0 0 z
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The coefficient matrix

0 -1 -1
C=10 0 -1
0 0 O

has rank 2. Since
rank(C) + nullity(C) = 3, we nullity(C) = 1.

Therefore, dim F(3) = 1.
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7.2 Diagonalization

Homework: [Textbook, Ex. 1, 3, 5,9, 11, 13, 17, 19; p.444].

In this section, we discuss, given a square matrix A, when or whether
we can find an invertible matriz P such that P~*AP is a diagonal ma-
trixz. This problem is closely associated to eigenvalues and eigenvectors.

First, we recall the definition 6.4.1, as follows:

Definition 7.2.1 Suppose A, B are two square matrices of size n X n.

We say A, B are similar, if A = P~!BP for some invertible matrix P.

We also define the following:

Definition 7.2.2 Suppose A is a square matrix of size n x n. We say
that A is diagonalizable, if there exists a invertible matrix P such
that P~1AP is a diagonal matrix.

So, our question is which matrices are diagonalizable? Following
theorem has some answer.

Theorem 7.2.3 Suppose A is a square matrix of size n x n. Then A is

diagonalizable if and only if A has n linearly independent eigenvectors.

Proof. Suppose A is diagonalizable. So, there is an invertible matrix
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P such that P~'AP = D is a diagonal matrix. Write

MO0 - 0
P=[p1 p2 -~ pa] and D=| = 72 " ",
0 0 - A

where p1, P2, ..., Pn are the cllumns of P. We have AP = PD. So,

M0 - 0
0 X -+ 0
Alpr Pz opa]=[p P2 e ]| 0
0 0 - M\,
Therefore, 1 =,2,...,n we have Ap; = \;p; and so p; are eigenvectors
of A. Also, since P is invertible p1, pa, . . ., Pn are linearly independent.

So, A have n linearly independent eigenvectors.

To prove the converse, assume A has n linearly independent eigen-
vectors. Let p1,pa, ..., Pn be n linearly independent eigenvectors of A.
Then Then, for : =,2,...,n we have, Ap; = \;p; for some \;. Write,

N OO0 - 0
P=[p1 p2 - pa] and D=| = 72 " 7
0 0 - A\

It follows easily that AP = PD. Since, columns af P are linearly in-
dependent, it follows that P is invertible. Therefore, P"'AP = D is a
diagonal matrix. So, the proof is complete. |

Steps for Diagonalizing an n x n matrix:

Let A be an n X n matrix.

1. Find n linearly independent eigenvectors py, pz2, - - - , Pn for A with
corresponding eigenvalues Aq, Ag, ..., \,. If n independent eigen-
vectors do not exists, then A is not diagonalizable.
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2. If A has n linearly independent eigenvectors as above, write

AN O - 0

0 A =+ 0

P=[p1 p =~ pa] and D=| = " = 7
0 0 - A

3. Then D = P7'AP is a diagonal matrix.

Theorem 7.2.4 Suppose A is an n X n matrix. If A has n distinct
eigenvalues, then the corresponding eignevectors are linearly indepen-

dent and A is diagonizable.

Proof. Let A, s, ..., A\, be distinct eigenvalues of A and let x; eigen-
vectosr corresponding to ;. So, Ax; = \;X;.

We claim that x;,xs,...,x, are linearly independent. If not, as-
sume form some m < n, we have Xy, Xa, ..., Xy are mutually linearly
independent and X,, is in Span ({X1,X2,...,Xm}). So, we can write

Xmt1 = C1X1 + CoX2 + -+ + CXm Egn — 1.

Here, at least one ¢; # 0. Multiply by A and use the equation Ax; =
AiX;, we have

Ama1Xmi1 = A1C1X1 + AaCoXa + - + A\nCmXm Egn —11.
Multiply Eqn-I by A1, we have
Ami1Xmi1 = Ama1C1X1 + Ama1CaXe + - - + Apa16mXm Egqn —I11.
Subtract Eqn-II from Eqn -III:
(Ana1 — A)erxy + (Mg — A2)caxa + - + (A1 — Am)CmXm = 0.

Since, at least one ¢; # 0. and since \; are distinct, at least one coeffi-
cient (A1 —A;)¢; # 0. This contrdicts that xq, Xz, . . ., X, are mutually
linearly independent. So, it is established that these n eigenvectors
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X1,Xa, ..., Xy are mutually linearly independent. (This method of
proof is called a proof by contrapositive argument.) Now, by
theorem 7.2.3, A is diagonizable. So, the proof is complete. |

Reading assignment: Read [Textbook, Examples 1-7, page 436-].

Exercise 7.2.5 (Ex. 6, p. 444) Let

3 1 15
A=10 -1 2 and P= |0 —-1 1
0 0 3 0 0 2

Verify that A is diagonalizable, by computing P~tAP.

Solution: We do it in a two steps.

1. Use TI to compute

1 1 -3
Pl = —-1
0
2. Use TI to compute
0 0
PT'AP=10 -1 0
0 0 3

So, it is verified that P~'AP is a diagonal matrix.
Exercise 7.2.6 (Ex. 10, p. 444) Let

| 1 .5].
2 1
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Show that A is not diagonalizable.

Solution: To do this, we have find and count the dimensions of all the

eigenspaces F(A). We do it in a few steps.

1. First, find all the eigenvalues. To do this, we solve

A—1 =5
2 A+1

det(\ — A) = =\ =0.

So, A = 0 is the only eigenvalue of A.

2. Now we compute the eigenspace F(0) of the eigenvalue A = 0.

We have E(0) is solution space of

[ - LG

Using TI (or by hand), a parametric solution of this system is

(0I — A)

given by
r=—-.5t y=t. so E0)={(-.5t1t):tecR}=R(-.51).
So, the (sum of) dimension(s) of the eigenspace(s)
— dimE(0) =1 < 2.

Therefore A is not diagonizable.

Exercise 7.2.7 (Ex. 14, p. 444) Let

2 1 -1
A=10 -1 2
0 0 -1

Show that A is not diagonalizable.

Solution: To do this, we have find and count the dimensions of all the

eigenspaces F(\). We do it in a few steps.
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. First, find all the eigenvalues. To do this, we solve

A—2 1 1
det(A — A) = 0 A +1 —=2|=Q=-2)A+1)?*=0.
0 0 A+1

So, A = —1,2 are the only eigenvalues of A.

Now we compute the dimension dim E(—1) of the eigenspace
E(—1) of the eigenvalue A\ = —1. We have E(—1) is solution

space of

x 0 -3 -1 +1 x 0
(—I-A) |y |=1]0 or 0 0 —2 y|=160
0 0 0 0 2 0

(We will avoid solving this system.) The rank of the coefficient

matrix is 2. So,

dim(E(—1)) = nullity =3 —rank =3 -2 = 1.

Now we compute the dimension dim FE(2) of eigenspace E(2) of

the eigenvalue A = 2. We have E(2) is solution space of

x 0 0 -1 +1 x
(—I-A) | y|=1]0 or 0 3 -2 y | =
0 0o 0 3 z

Use TI (or look at the columns) to see that rank of the coefficient

matrix is 2. So,
dim(F(2)) = nullity =3 —rank =3 —2 = 1.
So, the sum of dimensions of the eigenspaces
=dim E(—1) +dim E(2) =2 < 3.

Therefore A is not diagonizable.
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Exercise 7.2.8 (Ex. 20, p. 444) Let

4 -2
A=10 1
0 -2

Find the eigenvalues of A and determine whether there is a sufficient

number of them to guarantee that A is diagonalizable.
Solution: First, find all the eigenvalues. To do this, we solve
A—4 -3 2

det(\ — A) = 0 A=1  —1|=O-4\=1)A+2)=0.
0 0 A+2

So, A = 4,1,—2 are the eigenvalues of A. This means, A has three

distinct eigenvalues. Therefore, by theorem 7.2.4, A is diagonalizable.
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