
Chapter 7

Eigenvalues and Eigenvectors

7.1 Eigenvalues and Eigenvectors

Homework: [Textbook, §7.1 Ex. 5, 11, 15, 19, 25, 27, 61, 63, 65].

Optional Homework:[Textbook, §7.1 Ex. 53, 59].

In this section, we introduce eigenvalues and eigenvectors. This is

one of most fundamental and most useful concepts in linear algebra.
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Definition 7.1.1 Let A be an n × n matrix. A scalar λ is said to be

a eigenvalue of A, if

Ax = λx for some vector x 6= 0.

The vector x is called an eigenvector corresponding to λ. The zero

vector 0 is never an eigenvectors, by definition.

Reading assignment: Read [Textbook, Examples 1, 2, page 423].

7.1.1 Eigenspaces

Given a square matrix A, there will be many eigenvectors corresponding
to a given eigenvalue λ. In fact, together with the zero vector 0, the
set of all eigenvectors corresponding to a given eigenvalue λ will form
a subspace. We state the same as a theorem:

Theorem 7.1.2 Let A be an n × n matrix and λ is an eigenvalue of

A. Then the set

E(λ) = {0} ∪ {x : x is an eigenvector corresponding to λ}

(of all eigenvalues corresponding to λ, together with 0) is a subspace of

R
n. This subspace E(λ) is called the eigenspace of λ.

Proof. Since 0 ∈ E(λ), we have E(λ) is nonempty. Because of theorem
4.3.3, we need only to check that E(λ) is closed under addition and
scalar multiplication. Suppose x,y ∈ E(λ) and c be a scalar. Then,

Ax = λx and Ay = λy.

So,

A(x + y) = Ax + Ay = λx + λy = λ(x + y).
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So, x+y is an eigenvalue corresponding to λ or zero. So, x+y ∈ E(λ)
and E(λ) is closed under addition. Also,

A(cx) = c(Ax) = c(λx) = λ(cx).

So, cx ∈ E((λ) and E(λ) is closed under scalar multiplication. There-
fore, E(λ) is a subspace of R

n. The proof is complete.

Reading assignment: Read [Textbook, Examples 3, page 423].

Theorem 7.1.3 Let A be a square matrix of size n × n. Then

1. Then a scalar λ is an eigenvalue of A if and only if

det(λI − A) = 0,

here I denotes the identity matrix.

2. A vector x is an eigenvector, of A, corresponding to λ if and only

if x is a nozero solution

(λI − A)x = 0.

Proof. By definition, λ is an eigenvalue of A if and only if, for some
nonzero x, we have

Ax = λx = λIx ⇔ (λI − A)x = 0 ⇔ det(λI − A) = 0.

The last equivalence is given by [Textbook, §3.3], which we did not
cover. This establishes (1) of the theorem. The proof of (2) is obvious
or same as that of (1). This completes the proof.

Definition 7.1.4 Let A be a square matrix of size n × n. Then the

equation

det(λI − A) = 0

is called the characteristic equation of A. (The German word ’eigen’

roughly means ’characteristic’.)



226 CHAPTER 7. EIGENVALUES AND EIGENVECTORS

1. Using induction and expanding det((λI − A), it follows that

det(λI − A) = λn + cn−1λ
n−1 + · · · + c1λ + c0,

which is a polynomial in λ, of degree n. This polynomial is called

the characteristic polynomial of A.

2. If

A =

















a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

· · · · · · · · · · · · · · ·
am1 am2 am3 · · · amn

















then

(λI − A) =

















λ − a11 −a12 −a13 · · · −a1n

−a21 λ − a22 −a23 · · · −a2n

−a31 −a32 λ − a33 · · · −a3n

· · · · · · · · · · · · · · ·
−an1 −an2 −an3 · · · λ − ann

















.

So, the characteristic polynomial is the determinant of this ma-

trix.

Method of finding eigenvalues and eigenvectors is as follows: Let
A be an n × n matrix.

1. To find the eigenvalues of A solve the characteristic equation

det(λI − A) = 0.

This is a polynomial equation in λ of degree n. We only consider
real roots of this equation, in this class.
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2. Given an eigenvalue λi (i.e. a root of the characteristic equation),
to find the eigenspace E(λi), corresponding to λi, we solve the
linear system

(λiI − A)x = 0.

As usual, to solve this we reduce it to the row echelon form or
Gauss-Jordan form. Since λi is an eigenvalue, at least one row of
the echlon form will be zero.

Reading assignment: Read [Textbook, Examples 4-7, page 426-].

Exercise 7.1.5 (Ex. 6, p. 432) Let

A =







−2 2 −3

2 1 −6

−1 −2 0






.

1. Verify that λ1 = 5 is a eigenvalue of A and x1 = (1, 2,−1)T is a

corresponding eigenvector.

Solution: We need to check Ax1 = 5x1, We have

Ax1 =







−2 2 −3

2 1 −6

−1 −2 0













1

2

−1






=







5

10

−5






= 5







1

2

−1






= 5x1.

So, assertion is verified.

2. Verify that λ2 = −3 is a eigenvalue of A and x2 = (−2, 1, 0)T is

a corresponding eigenvector.

Solution: We need to check Ax2 = −3x2, We have

Ax2 =







−2 2 −3

2 1 −6

−1 −2 0













−2

1

0






=







6

−3

0






= −3







−2

1

0






= −3x2.

So, assertion is verified.
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3. Verify that λ3 = −3 is a eigenvalue of A and x3 = (3, 0, 1)T is a

corresponding eigenvector.

Solution: We need to check Ax3 = −3x3, We have

Ax3 =







−2 2 −3

2 1 −6

−1 −2 0













3

0

1






=







−9

0

−3






= −3







3

0

1






= −3x3.

So, assertion is verified.

Exercise 7.1.6 (Ex. 14, p. 433) Let

A =







1 0 5

0 −2 4

1 −2 9






.

1. Determine whether x = (1, 1, 0)T is an eigenvector of A.

Solution: We have

Ax =







1 0 5

0 −2 4

1 −2 9













1

1

0






=







1

−2

−1






6= λ







1

1

0







for all λ. So, x is not an eigenvector of A.

2. Determine whether x = (−5, 2, 1)T is an eigenvector of A.

Solution: We have

Ax =







1 0 5

0 −2 4

1 −2 9













−5

2

1






=







0

0

0






= 0







−5

2

1






= 0x..

So, x is an eigenvector and corresponding eigenvalue is λ = 0.
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3. Determine whether x = (0, 0, 0)T is an eigenvector of A.

Solution: No, 0 is, by definition, never an eigenvector.

4. Determine whether x = (2
√

6−3,−2
√

6+6, 3)T is an eigenvector

of A.

Solution: We have

Ax =







1 0 5

0 −2 4

1 −2 9













2
√

6 − 3

−2
√

6 + 6

3






=







2
√

6 + 12

4
√

6

6
√

6 + 12






6= λ







2
√

6 − 3

−2
√

6 + 6

3






.

So, x is not an eigenvector of A.

Exercise 7.1.7 (Ex. 20, p. 433) Let

A =







−5 0 0

3 7 0

4 −2 3






.

1. Find the characteristic equation of A.

Solution: The characteristic polynomial is

det(λI − A) =

∣

∣

∣

∣

∣

∣

∣

λ + 5 0 0

−3 λ − 7 0

−4 2 λ − 3

∣

∣

∣

∣

∣

∣

∣

= (λ + 5)(λ − 7)(λ − 3).

So, the characteristic equation is

(λ + 5)(λ − 7)(λ − 3) = 0.

2. Find eigenvalues (and corresponding eigenvectors) of A.

Solution: Solving the characteristic equation, the eigenvalues

are λ = −5, 7, 3.
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(a) To find an eigenvector corresponding to λ = −5, wehave to

solve (−5I − A)x = 0 or







0 0 0

−3 −12 0

−4 2 −8













x

y

z






=







0

0

0






.

Solving, we get

x = −16

9
t y =

4

9
t z = t.

So, that eigenspace of λ = −5 is

{(

−16

9
t,

4

9
t, t

)

: t ∈ R

}

.

In particular, with t = 1, an eigenvector, for eigenvalue λ =

−5, is
(

−16

9
, 4

9
, 1

)T

.

(b) To find an eigenvector corresponding to λ = 7, wehave to

solve (7I − A)x = 0 or







12 0 0

−3 0 0

−4 2 4













x

y

z






=







0

0

0






.

Solving, we get

x = 0 y = −2t z = t.

So, that eigenspace of λ = 7 is

{(0,−2t, t) : t ∈ R} .

In particular, with t = 1, an eigenvector, for eigenvalue λ =

7, is (0,−2, 1)T
.
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(c) To find an eigenvector corresponding to λ = 3, wehave to

solve (3I − A)x = 0 or







8 0 0

−3 −4 0

−4 2 0













x

y

z






=







0

0

0






.

Solving, we get

x = 0 y = 0 z = t.

So, that eigenspace of λ = 3 is

{(0, 0, t) : t ∈ R} .

In particular, with t = 1, an eigenvector, for eigenvalue λ =

3, is (0, 0, 1)T
.

Exercise 7.1.8 (Ex. 66, p. 435) Let

A =







3 1 1

0 3 1

0 0 3






.

Find the dimension of the eigenspace corresponding to the eigenvalue

λ = 3.

Solution: The eigenspace E(3) is the solution space of the system

(3I − A)x = x, or







3 − 3 −1 −1

0 3 − 3 −1

0 0 3 − 3













x

y

z






=







0

0

0






or







0 −1 −1

0 0 −1

0 0 0













x

y

z






=







0

0

0
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The coefficient matrix

C =







0 −1 −1

0 0 −1

0 0 0






.

has rank 2. Since

rank(C) + nullity(C) = 3, we nullity(C) = 1.

Therefore, dim E(3) = 1.
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7.2 Diagonalization

Homework: [Textbook, Ex. 1, 3, 5, 9, 11, 13, 17, 19; p.444].

In this section, we discuss, given a square matrix A, when or whether

we can find an invertible matrix P such that P−1AP is a diagonal ma-

trix. This problem is closely associated to eigenvalues and eigenvectors.

First, we recall the definition 6.4.1, as follows:

Definition 7.2.1 Suppose A,B are two square matrices of size n× n.

We say A,B are similar, if A = P−1BP for some invertible matrix P.

We also define the following:

Definition 7.2.2 Suppose A is a square matrix of size n × n. We say

that A is diagonalizable, if there exists a invertible matrix P such

that P−1AP is a diagonal matrix.

So, our question is which matrices are diagonalizable? Following
theorem has some answer.

Theorem 7.2.3 Suppose A is a square matrix of size n×n. Then A is

diagonalizable if and only if A has n linearly independent eigenvectors.

Proof. Suppose A is diagonalizable. So, there is an invertible matrix
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P such that P−1AP = D is a diagonal matrix. Write

P =
[

p1 p2 · · · pn

]

and D =









λ1 0 · · · 0
0 λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · λn









,

where p1,p2, . . . ,pn are the cllumns of P. We have AP = PD. So,

A
[

p1 p2 · · · pn

]

=
[

p1 p2 · · · pn

]









λ1 0 · · · 0
0 λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · λn









.

Therefore, i =, 2, . . . , n we have Api = λipi and so pi are eigenvectors
of A. Also, since P is invertible p1,p2, . . . ,pn are linearly independent.
So, A have n linearly independent eigenvectors.

To prove the converse, assume A has n linearly independent eigen-
vectors. Let p1,p2, . . . ,pn be n linearly independent eigenvectors of A.

Then Then, for i =, 2, . . . , n we have, Api = λipi for some λi. Write,

P =
[

p1 p2 · · · pn

]

and D =









λ1 0 · · · 0
0 λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · λn









.

It follows easily that AP = PD. Since, columns af P are linearly in-
dependent, it follows that P is invertible. Therefore, P−1AP = D is a
diagonal matrix. So, the proof is complete.

Steps for Diagonalizing an n × n matrix:

Let A be an n × n matrix.

1. Find n linearly independent eigenvectors p1,p2, · · · ,pn for A with
corresponding eigenvalues λ1, λ2, . . . , λn. If n independent eigen-
vectors do not exists, then A is not diagonalizable.
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2. If A has n linearly independent eigenvectors as above, write

P =
[

p1 p2 · · · pn

]

and D =









λ1 0 · · · 0
0 λ2 · · · 0

· · · · · · · · · · · ·
0 0 · · · λn









3. Then D = P−1AP is a diagonal matrix.

Theorem 7.2.4 Suppose A is an n × n matrix. If A has n distinct

eigenvalues, then the corresponding eignevectors are linearly indepen-

dent and A is diagonizable.

Proof. Let λ1, λ2, . . . , λn be distinct eigenvalues of A and let xi eigen-
vectosr corresponding to λi. So, Axi = λixi.

We claim that x1,x2, . . . ,xn are linearly independent. If not, as-
sume form some m < n, we have x1,x2, . . . ,xm are mutually linearly
independent and xm1

is in Span ({x1,x2, . . . ,xm}) . So, we can write

xm+1 = c1x1 + c2x2 + · · · + cmxm Eqn − I.

Here, at least one ci 6= 0. Multiply by A and use the equation Axi =
λixi, we have

λm+1xm+1 = λ1c1x1 + λ2c2x2 + · · · + λmcmxm Eqn − II.

Multiply Eqn-I by λm+1, we have

λm+1xm+1 = λm+1c1x1 + λm+1c2x2 + · · · + λm+1cmxm Eqn − III.

Subtract Eqn-II from Eqn -III:

(λm+1 − λ1)c1x1 + (λm+1 − λ2)c2x2 + · · · + (λm+1 − λm)cmxm = 0.

Since, at least one ci 6= 0. and since λi are distinct, at least one coeffi-
cient (λm+1−λi)ci 6= 0. This contrdicts that x1,x2, . . . ,xm are mutually
linearly independent. So, it is established that these n eigenvectors
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x1,x2, . . . ,xn are mutually linearly independent. (This method of
proof is called a proof by contrapositive argument.) Now, by
theorem 7.2.3, A is diagonizable. So, the proof is complete.

Reading assignment: Read [Textbook, Examples 1-7, page 436-].

Exercise 7.2.5 (Ex. 6, p. 444) Let

A =







2 3 1

0 −1 2

0 0 3






and P =







1 1 5

0 −1 1

0 0 2






.

Verify that A is diagonalizable, by computing P−1AP.

Solution: We do it in a two steps.

1. Use TI to compute

P−1 =







1 1 −3

0 −1 .5

0 0 .5






.

2. Use TI to compute

P−1AP =







2 0 0

0 −1 0

0 0 3






.

So, it is verified that P−1AP is a diagonal matrix.

Exercise 7.2.6 (Ex. 10, p. 444) Let

A =

[

1 .5

−2 −1

]

.
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Show that A is not diagonalizable.

Solution: To do this, we have find and count the dimensions of all the

eigenspaces E(λ). We do it in a few steps.

1. First, find all the eigenvalues. To do this, we solve

det(λI − A) =

∣

∣

∣

∣

∣

λ − 1 −.5

2 λ + 1

∣

∣

∣

∣

∣

= λ2 = 0.

So, λ = 0 is the only eigenvalue of A.

2. Now we compute the eigenspace E(0) of the eigenvalue λ = 0.

We have E(0) is solution space of

(0I − A)

[

x

y

]

=

[

0

0

]

or

[

1 .5

−2 −1

] [

x

y

]

=

[

0

0

]

Using TI (or by hand), a parametric solution of this system is

given by

x = −.5t y = t. so E(0) = {(−.5t, t) : t ∈ R} = R(−.5, 1).

So, the (sum of) dimension(s) of the eigenspace(s)

= dim E(0) = 1 < 2.

Therefore A is not diagonizable.

Exercise 7.2.7 (Ex. 14, p. 444) Let

A =







2 1 −1

0 −1 2

0 0 −1






.

Show that A is not diagonalizable.

Solution: To do this, we have find and count the dimensions of all the

eigenspaces E(λ). We do it in a few steps.
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1. First, find all the eigenvalues. To do this, we solve

det(λI − A) =

∣

∣

∣

∣

∣

∣

∣

λ − 2 −1 1

0 λ + 1 −2

0 0 λ + 1

∣

∣

∣

∣

∣

∣

∣

= (λ − 2)(λ + 1)2 = 0.

So, λ = −1, 2 are the only eigenvalues of A.

2. Now we compute the dimension dim E(−1) of the eigenspace

E(−1) of the eigenvalue λ = −1. We have E(−1) is solution

space of

(−I−A)







x

y

z






=







0

0

0






or







−3 −1 +1

0 0 −2

0 0 0













x

y

z






=







0

0

0







(We will avoid solving this system.) The rank of the coefficient

matrix is 2. So,

dim(E(−1)) = nullity = 3 − rank = 3 − 2 = 1.

3. Now we compute the dimension dim E(2) of eigenspace E(2) of

the eigenvalue λ = 2. We have E(2) is solution space of

(−I −A)







x

y

z






=







0

0

0






or







0 −1 +1

0 3 −2

0 0 3













x

y

z






=







0

0

0







Use TI (or look at the columns) to see that rank of the coefficient

matrix is 2. So,

dim(E(2)) = nullity = 3 − rank = 3 − 2 = 1.

4. So, the sum of dimensions of the eigenspaces

= dim E(−1) + dim E(2) = 2 < 3.

Therefore A is not diagonizable.
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Exercise 7.2.8 (Ex. 20, p. 444) Let

A =







4 3 −2

0 1 1

0 0 −2






.

Find the eigenvalues of A and determine whether there is a sufficient

number of them to guarantee that A is diagonalizable.

Solution: First, find all the eigenvalues. To do this, we solve

det(λI − A) =

∣

∣

∣

∣

∣

∣

∣

λ − 4 −3 2

0 λ − 1 −1

0 0 λ + 2

∣

∣

∣

∣

∣

∣

∣

= (λ − 4)(λ − 1)(λ + 2) = 0.

So, λ = 4, 1,−2 are the eigenvalues of A. This means, A has three

distinct eigenvalues. Therefore, by theorem 7.2.4, A is diagonalizable.
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