
CHAPTER 7

Eigenvalues
and

Eigenvectors

7.1 ELEMENTARY PROPERTIES OF EIGENSYSTEMS

Up to this point, almost everything was either motivated by or evolved from the
consideration of systems of linear algebraic equations. But we have come to a
turning point, and from now on the emphasis will be different. Rather than being
concerned with systems of algebraic equations, many topics will be motivated
or driven by applications involving systems of linear differential equations and
their discrete counterparts, difference equations.

For example, consider the problem of solving the system of two first-order
linear differential equations, du1/dt = 7u1 − 4u2 and du2/dt = 5u1 − 2u2. In
matrix notation, this system is

(
u′

1

u′
2

)
=

(
7 −4
5 −2

)(
u1

u2

)
or, equivalently, u′ = Au, (7.1.1)

where u′ =
(

u′

1
u′

2

)
, A =

(
7 −4
5 −2

)
, and u =

(
u1

u2

)
. Because solutions of a single

equation u′ = λu have the form u = αeλt, we are motivated to seek solutions
of (7.1.1) that also have the form

u1 = α1e
λt and u2 = α2e

λt. (7.1.2)

Differentiating these two expressions and substituting the results in (7.1.1) yields

α1λe
λt = 7α1e

λt − 4α2e
λt

α2λe
λt = 5α1e

λt − 2α2e
λt
⇒

α1λ = 7α1 − 4α2

α2λ = 5α1 − 2α2

⇒
(
7 −4
5 −2

)(
α1

α2

)
=λ

(
α1

α2

)
.
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In other words, solutions of (7.1.1) having the form (7.1.2) can be constructed

provided solutions for λ and x =
(

α1

α2

)
in the matrix equation Ax = λx can

be found. Clearly, x = 0 trivially satisfies Ax = λx, but x = 0 provides no
useful information concerning the solution of (7.1.1). What we really need are
scalars λ and nonzero vectors x that satisfy Ax = λx. Writing Ax = λx
as (A− λI)x = 0 shows that the vectors of interest are the nonzero vectors in
N (A− λI) . But N (A− λI) contains nonzero vectors if and only if A − λI
is singular. Therefore, the scalars of interest are precisely the values of λ that
make A − λI singular or, equivalently, the λ ’s for which det (A− λI) = 0.

These observations motivate the definition of eigenvalues and eigenvectors.
66

Eigenvalues and Eigenvectors
For an n× n matrix A, scalars λ and vectors xn×1 �= 0 satisfying
Ax = λx are called eigenvalues and eigenvectors of A, respectively,
and any such pair, (λ,x), is called an eigenpair for A. The set of
distinct eigenvalues, denoted by σ (A) , is called the spectrum of A.

• λ ∈ σ (A)⇐⇒ A− λI is singular ⇐⇒ det (A− λI) = 0. (7.1.3)

•
{
x �= 0

∣∣ x ∈ N (A− λI)
}

is the set of all eigenvectors associated
with λ. From now on, N (A− λI) is called an eigenspace for A.

• Nonzero row vectors y∗ such that y∗(A− λI) = 0 are called left-

hand eigenvectors for A (see Exercise 7.1.18 on p. 503).

Geometrically, Ax = λx says that under transformation by A, eigenvec-
tors experience only changes in magnitude or sign—the orientation of Ax in ℜn

is the same as that of x. The eigenvalue λ is simply the amount of “stretch”
or “shrink” to which the eigenvector x is subjected when transformed by A.
Figure 7.1.1 depicts the situation in ℜ2.

Ax = λx

x

Figure 7.1.1

66
The words eigenvalue and eigenvector are derived from the German word eigen, which means
owned by or peculiar to. Eigenvalues and eigenvectors are sometimes called characteristic values
and characteristic vectors, proper values and proper vectors, or latent values and latent vectors.
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Let’s now face the problem of finding the eigenvalues and eigenvectors of

the matrix A =
(
7 −4
5 −2

)
appearing in (7.1.1). As noted in (7.1.3), the eigen-

values are the scalars λ for which det (A− λI) = 0. Expansion of det (A− λI)
produces the second-degree polynomial

p(λ) = det (A− λI) =

∣∣∣∣
7− λ −4
5 −2− λ

∣∣∣∣ = λ2 − 5λ+ 6 = (λ− 2)(λ− 3),

which is called the characteristic polynomial for A. Consequently, the eigen-
values for A are the solutions of the characteristic equation p(λ) = 0 (i.e.,
the roots of the characteristic polynomial), and they are λ = 2 and λ = 3.

The eigenvectors associated with λ = 2 and λ = 3 are simply the nonzero
vectors in the eigenspaces N (A− 2I) and N (A− 3I), respectively. But deter-
mining these eigenspaces amounts to nothing more than solving the two homo-
geneous systems, (A− 2I)x = 0 and (A− 3I)x = 0.

For λ = 2,

A− 2I =

(
5 −4
5 −4

)
−→

(
1 −4/5
0 0

)
=⇒ x1 = (4/5)x2

x2 is free

=⇒ N (A− 2I) =

{
x
∣∣∣ x = α

(
4/5
1

)}
.

For λ = 3,

A− 3I =

(
4 −4
5 −5

)
−→

(
1 −1
0 0

)
=⇒ x1 = x2

x2 is free

=⇒ N (A− 3I) =

{
x
∣∣∣ x = β

(
1
1

)}
.

In other words, the eigenvectors of A associated with λ = 2 are all nonzero
multiples of x = ( 4/5 1 )

T
, and the eigenvectors associated with λ = 3 are

all nonzero multiples of y = ( 1 1 )
T
. Although there are an infinite number of

eigenvectors associated with each eigenvalue, each eigenspace is one dimensional,
so, for this example, there is only one independent eigenvector associated with
each eigenvalue.

Let’s complete the discussion concerning the system of differential equations
u′ = Au in (7.1.1). Coupling (7.1.2) with the eigenpairs (λ1,x) and (λ2,y) of
A computed above produces two solutions of u′ = Au, namely,

u1 = eλ1tx = e2t
(
4/5
1

)
and u2 = eλ2ty = e3t

(
1
1

)
.

It turns out that all other solutions are linear combinations of these two particular
solutions—more is said in §7.4 on p. 541.

Below is a summary of some general statements concerning features of the
characteristic polynomial and the characteristic equation.
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Characteristic Polynomial and Equation

• The characteristic polynomial of An×n is p(λ) = det (A− λI).
The degree of p(λ) is n, and the leading term in p(λ) is (−1)nλn.

• The characteristic equation for A is p(λ) = 0.

• The eigenvalues of A are the solutions of the characteristic equation
or, equivalently, the roots of the characteristic polynomial.

• Altogether, A has n eigenvalues, but some may be complex num-
bers (even if the entries of A are real numbers), and some eigenval-
ues may be repeated.

• If A contains only real numbers, then its complex eigenvalues must
occur in conjugate pairs—i.e., if λ ∈ σ (A) , then λ ∈ σ (A) .

Proof. The fact that det (A− λI) is a polynomial of degree n whose leading
term is (−1)nλn follows from the definition of determinant given in (6.1.1). If

δij =

{
1 if i = j,
0 if i �= j,

then

det (A− λI) =
∑

p

σ(p)(a1p1
− δ1p1

λ)(a2p2
− δ2p2

λ) · · · (anpn
− δnpn

λ)

is a polynomial in λ. The highest power of λ is produced by the term

(a11 − λ)(a22 − λ) · · · (ann − λ),

so the degree is n, and the leading term is (−1)nλn. The discussion given
earlier contained the proof that the eigenvalues are precisely the solutions of the
characteristic equation, but, for the sake of completeness, it’s repeated below:

λ ∈ σ (A)⇐⇒ Ax = λx for some x �= 0⇐⇒ (A− λI)x = 0 for some x �= 0

⇐⇒ A− λI is singular⇐⇒ det (A− λI) = 0.

The fundamental theorem of algebra is a deep result that insures every poly-
nomial of degree n with real or complex coefficients has n roots, but some
roots may be complex numbers (even if all the coefficients are real), and some
roots may be repeated. Consequently, A has n eigenvalues, but some may be
complex, and some may be repeated. The fact that complex eigenvalues of real
matrices must occur in conjugate pairs is a consequence of the fact that the roots
of a polynomial with real coefficients occur in conjugate pairs.
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Example 7.1.1

Problem: Determine the eigenvalues and eigenvectors of A =
(
1 −1
1 1

)
.

Solution: The characteristic polynomial is

det (A− λI) =

∣∣∣∣
1− λ −1
1 1− λ

∣∣∣∣ = (1− λ)2 + 1 = λ2 − 2λ+ 2,

so the characteristic equation is λ2 − 2λ + 2 = 0. Application of the quadratic
formula yields

λ =
2±

√
−4

2
=

2± 2
√
−1

2
= 1± i,

so the spectrum of A is σ (A) = {1 + i, 1− i}. Notice that the eigenvalues are
complex conjugates of each other—as they must be because complex eigenvalues
of real matrices must occur in conjugate pairs. Now find the eigenspaces.

For λ = 1 + i,

A− λI =

(
−i −1
1 −i

)
−→

(
1 −i
0 0

)
=⇒ N (A− λI) = span

{(
i
1

)}
.

For λ = 1− i,

A− λI =

(
i −1
1 i

)
−→

(
1 i
0 0

)
=⇒ N (A− λI) = span

{(
−i
1

)}
.

In other words, the eigenvectors associated with λ1 = 1 + i are all nonzero
multiples of x1 = ( i 1 )

T
, and the eigenvectors associated with λ2 = 1 − i

are all nonzero multiples of x2 = (−i 1 )
T
. In previous sections, you could

be successful by thinking only in terms of real numbers and by dancing around
those statements and issues involving complex numbers. But this example makes
it clear that avoiding complex numbers, even when dealing with real matrices,
is no longer possible—very innocent looking matrices, such as the one in this
example, can possess complex eigenvalues and eigenvectors.

As we have seen, computing eigenvalues boils down to solving a polynomial
equation. But determining solutions to polynomial equations can be a formidable
task. It was proven in the nineteenth century that it’s impossible to express
the roots of a general polynomial of degree five or higher using radicals of the
coefficients. This means that there does not exist a generalized version of the
quadratic formula for polynomials of degree greater than four, and general poly-
nomial equations cannot be solved by a finite number of arithmetic operations
involving +,−,×,÷, n

√
. Unlike solving Ax = b, the eigenvalue problem gener-

ally requires an infinite algorithm, so all practical eigenvalue computations are
accomplished by iterative methods—some are discussed later.
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For theoretical work, and for textbook-type problems, it’s helpful to express
the characteristic equation in terms of the principal minors. Recall that an r × r
principal submatrix of An×n is a submatrix that lies on the same set of r
rows and columns, and an r × r principal minor is the determinant of an r × r
principal submatrix. In other words, r × r principal minors are obtained by
deleting the same set of n−r rows and columns, and there are

(
n
r

)
= n!/r!(n−r)!

such minors. For example, the 1× 1 principal minors of

A =



−3 1 −3
20 3 10
2 −2 4


 (7.1.4)

are the diagonal entries −3, 3, and 4. The 2× 2 principal minors are
∣∣∣∣
−3 1
20 3

∣∣∣∣ = −29,
∣∣∣∣
−3 −3
2 4

∣∣∣∣ = −6, and

∣∣∣∣
3 10
−2 4

∣∣∣∣ = 32,

and the only 3× 3 principal minor is det (A) = −18.
Related to the principal minors are the symmetric functions of the eigenval-

ues. The kth symmetric function of λ1, λ2, . . . , λn is defined to be the sum
of the product of the eigenvalues taken k at a time. That is,

sk =
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

For example, when n = 4,

s1 = λ1 + λ2 + λ3 + λ4,

s2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

s3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4,

s4 = λ1λ2λ3λ4.

The connection between symmetric functions, principal minors, and the coeffi-
cients in the characteristic polynomial is given in the following theorem.

Coefficients in the Characteristic Equation
If λn + c1λ

n−1 + c2λ
n−2 + · · · + cn−1λ + cn = 0 is the characteristic

equation for An×n, and if sk is the kth symmetric function of the
eigenvalues λ1, λ2, . . . , λn of A, then

• ck = (−1)k∑(all k × k principal minors), (7.1.5)

• sk =
∑
(all k × k principal minors), (7.1.6)

• trace (A) = λ1 + λ2 + · · ·+ λn = −c1, (7.1.7)

• det (A) = λ1λ2 · · ·λn = (−1)ncn. (7.1.8)
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Proof. At least two proofs of (7.1.5) are possible, and although they are concep-
tually straightforward, each is somewhat tedious. One approach is to successively
use the result of Exercise 6.1.14 to expand det (A− λI). Another proof rests on
the observation that if

p(λ) = det(A− λI) = (−1)nλn + a1λ
n−1 + a2λ

n−2 + · · ·+ an−1λ+ an

is the characteristic polynomial for A, then the characteristic equation is

λn + c1λ
n−1 + c2λ

n−2 + · · ·+ cn−1λ+ cn = 0, where ci = (−1)nai.
Taking the rth derivative of p(λ) yields p(r)(0) = r!an−r, and hence

cn−r =
(−1)n
r!

p(r)(0). (7.1.9)

It’s now a matter of repeatedly applying the formula (6.1.19) for differentiating
a determinant to p(λ) = det (A− λI). After r applications of (6.1.19),

p(r)(λ) =
∑

ij 	=ik

Di1···ir (λ),

where Di1···ir (λ) is the determinant of the matrix identical to A − λI except
that rows i1, i2, . . . , ir have been replaced by −eTi1 , −eTi2 , . . . ,−eTir , respectively.
It follows that Di1···ir (0) = (−1)rdet (Ai1···ir ), where Ai1i2···ir is identical to
A except that rows i1, i2, . . . , ir have been replaced by eTi1 , e

T
i2
, . . . , eTir , re-

spectively, and det (Ai1···ir ) is the n− r × n− r principal minor obtained by
deleting rows and columns i1, i2, . . . , ir from A. Consequently,

p(r)(0) =
∑

ij 	=ik

Di1···ir (0) = (−1)r
∑

ij 	=ik

det (Ai1···ir )

= r!× (−1)r
∑

(all n− r × n− r principal minors).

The factor r! appears because each of the r! permutations of the subscripts on
Ai1···ir describes the same matrix. Therefore, (7.1.9) says

cn−r =
(−1)n
r!

p(r)(0) = (−1)n−r
∑

(all n− r × n− r principal minors).

To prove (7.1.6), write the characteristic equation for A as

(λ− λ1)(λ− λ2) · · · (λ− λn) = 0, (7.1.10)

and expand the left-hand side to produce

λn − s1λ
n−1 + · · ·+ (−1)kskλn−k + · · ·+ (−1)nsn = 0. (7.1.11)

(Using n = 3 or n = 4 in (7.1.10) makes this clear.) Comparing (7.1.11)
with (7.1.5) produces the desired conclusion. Statements (7.1.7) and (7.1.8) are
obtained from (7.1.5) and (7.1.6) by setting k = 1 and k = n.
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Example 7.1.2

Problem: Determine the eigenvalues and eigenvectors of

A =



−3 1 −3
20 3 10
2 −2 4


 .

Solution: Use the principal minors computed in (7.1.4) along with (7.1.5) to
obtain the characteristic equation

λ3 − 4λ2 − 3λ+ 18 = 0.

A result from elementary algebra states that if the coefficients αi in

λn + αn−1λ
n−1 + · · ·+ α1λ+ α0 = 0

are integers, then every integer solution is a factor of α0. For our problem, this
means that if there exist integer eigenvalues, then they must be contained in the
set S = {±1, ±2, ±3, ±6, ±9, ±18}. Evaluating p(λ) for each λ ∈ S reveals
that p(3) = 0 and p(−2) = 0, so λ = 3 and λ = −2 are eigenvalues for A.
To determine the other eigenvalue, deflate the problem by dividing

λ3 − 4λ2 − 3λ+ 18

λ− 3
= λ2 − λ− 6 = (λ− 3)(λ+ 2).

Thus the characteristic equation can be written in factored form as

(λ− 3)2(λ+ 2) = 0,

so the spectrum of A is σ (A) = {3, −2} in which λ = 3 is repeated—we say
that the algebraic multiplicity of λ = 3 is two. The eigenspaces are obtained
as follows.
For λ = 3,

A− 3I −→



1 0 1/2
0 1 0
0 0 0


 =⇒ N (A− 3I) = span







−1
0
2






 .

For λ = −2,

A+ 2I −→



1 0 1
0 1 −2
0 0 0


 =⇒ N (A+ 2I) = span







−1
2
1






 .

Notice that although the algebraic multiplicity of λ = 3 is two, the dimen-
sion of the associated eigenspace is only one—we say that A is deficient in
eigenvectors. As we will see later, deficient matrices pose significant difficulties.
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Example 7.1.3

Continuity of Eigenvalues. A classical result (requiring complex analysis)
states that the roots of a polynomial vary continuously with the coefficients. Since
the coefficients of the characteristic polynomial p(λ) of A can be expressed
in terms of sums of principal minors, it follows that the coefficients of p(λ)
vary continuously with the entries of A. Consequently, the eigenvalues of A
must vary continuously with the entries of A. Caution! Components of an
eigenvector need not vary continuously with the entries of A—e.g., consider

x = (ǫ−1, 1) as an eigenvector for A =
(
0 1
0 ǫ

)
, and let ǫ→ 0.

Example 7.1.4

Spectral Radius. For square matrices A, the number

ρ(A) = max
λ∈σ(A)

|λ|

is called the spectral radius of A. It’s not uncommon for applications to
require only a bound on the eigenvalues of A. That is, precise knowledge of
each eigenvalue may not called for, but rather just an upper bound on ρ(A)
is all that’s often needed. A rather crude (but cheap) upper bound on ρ(A)
is obtained by observing that ρ(A) ≤ ‖A‖ for every matrix norm. This is
true because if (λ,x) is any eigenpair, then X =

[
x |0 | · · · |0

]
n×n

�= 0, and

λX = AX implies |λ| ‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖ ‖X‖ , so

|λ| ≤ ‖A‖ for all λ ∈ σ (A) . (7.1.12)

This result is a precursor to a stronger relationship between spectral radius
and norm that is hinted at in Exercise 7.3.12 and developed in Example 7.10.1
(p. 619).

The eigenvalue bound (7.1.12) given in Example 7.1.4 is cheap to compute,
especially if the 1-norm or ∞-norm is used, but you often get what you pay
for. You get one big circle whose radius is usually much larger than the spectral
radius ρ(A). It’s possible to do better by using a set of Gerschgorin

67
circles as

described below.

67
S. A. Gerschgorin illustrated the use of Gerschgorin circles for estimating eigenvalues in 1931,
but the concept appears earlier in work by L. Lévy in 1881, by H. Minkowski (p. 278) in 1900,
and by J. Hadamard (p. 469) in 1903. However, each time the idea surfaced, it gained little
attention and was quickly forgotten until Olga Taussky (1906–1995), the premier woman of
linear algebra, and her fellow German emigrè Alfred Brauer (1894–1985) became captivated
by the result. Taussky (who became Olga Taussky-Todd after marrying the numerical analyst
John Todd) and Brauer devoted significant effort to strengthening, promoting, and popularizing
Gerschgorin-type eigenvalue bounds. Their work during the 1940s and 1950s ended the periodic
rediscoveries, and they made Gerschgorin (who might otherwise have been forgotten) famous.
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Gerschgorin Circles

• The eigenvalues of A ∈ Cn×n are contained the union Gr of the n
Gerschgorin circles defined by

|z − aii| ≤ ri, where ri =

n∑

j=1
j �=i

|aij | for i = 1, 2, . . . , n. (7.1.13)

In other words, the eigenvalues are trapped in the collection of circles
centered at aii with radii given by the sum of absolute values in Ai∗
with aii deleted.

• Furthermore, if a union U of k Gerschgorin circles does not touch
any of the other n− k circles, then there are exactly k eigenvalues
(counting multiplicities) in the circles in U . (7.1.14)

• Since σ(AT ) = σ (A) , the deleted absolute row sums in (7.1.13)
can be replaced by deleted absolute column sums, so the eigenvalues
of A are also contained in the union Gc of the circles defined by

|z − ajj | ≤ cj , where cj =
n∑

i=1
i�=j

|aij | for j = 1, 2, . . . , n. (7.1.15)

• Combining (7.1.13) and (7.1.15) means that the eigenvalues of A
are contained in the intersection Gr ∩ Gc. (7.1.16)

Proof. Let (λ,x) be an eigenpair for A, and assume x has been normalized
so that ‖x‖∞ = 1. If xi is a component of x such that |xi| = 1, then

λxi = [λx]i = [Ax]i =

n∑

j=1

aijxj =⇒ (λ− aii)xi =

n∑

j=1
j �=i

aijxj ,

and hence

|λ− aii| =|λ− aii| |xi| =
∣∣∣∣
∑

j 	=i

aijxj

∣∣∣∣ ≤
∑

j 	=i

|aij | |xj | ≤
∑

j 	=i

|aij | = ri.

Thus λ is in one of the Gerschgorin circles, so the union of all such circles
contains σ (A) . To establish (7.1.14), let D = diag (a11, a22, . . . , ann) and
B = A−D, and set C(t) = D+ tB for t ∈ [0, 1]. The first part shows that the
eigenvalues of λi(t) of C(t) are contained in the union of the Gerschgorin circles
Ci(t) defined by |z−aii| ≤ t ri. The circles Ci(t) grow continuously with t from
individual points aii when t = 0 to the Gerschgorin circles of A when t = 1,
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so, if the circles in the isolated union U are centered at ai1i1 , ai2i2 , . . . , aikik ,
then for every t ∈ [0, 1] the union U(t) = Ci1(t) ∪ Ci2(t) ∪ · · · ∪ Cik(t) is dis-

joint from the union U(t) of the other n− k Gerschgorin circles of C(t). Since
(as mentioned in Example 7.1.3) each eigenvalue λi(t) of C(t) also varies con-
tinuously with t, each λi(t) is on a continuous curve Γi having one end at
λi(0) = aii and the other end at λi(1) ∈ σ (A) . But since U(t) ∩ U(t) = φ for
all t ∈ [0, 1], the curves Γi1 ,Γi2 , . . . ,Γik are entirely contained in U , and hence
the end points λi1(1), λi2(1), . . . , λik(1) are in U . Similarly, the other n − k
eigenvalues of A are in the union of the complementary set of circles.

Example 7.1.5

Problem: Estimate the eigenvalues of A =

(
5 1 1
0 6 1
1 0 −5

)
.

• A crude estimate is derived from the bound given in Example 7.1.4 on p. 497.
Using the ∞-norm, (7.1.12) says that |λ| ≤ ‖A‖∞ = 7 for all λ ∈ σ (A) .

• Better estimates are produced by the Gerschgorin circles in Figure 7.1.2 that
are derived from row sums. Statements (7.1.13) and (7.1.14) guarantee that
one eigenvalue is in (or on) the circle centered at −5, while the remaining
two eigenvalues are in (or on) the larger circle centered at +5.

1 2 3 4 5 6 7-1-2-3-4-5-6-7

Figure 7.1.2. Gerschgorin circles derived from row sums.

• The best estimate is obtained from (7.1.16) by considering Gr ∩ Gc.

1 2 3 4 5 6 7-1-2-3-4-5-6-7

Figure 7.1.3. Gerschgorin circles derived from Gr ∩ Gc.
In other words, one eigenvalue is in the circle centered at −5, while the other
two eigenvalues are in the union of the other two circles in Figure 7.1.3. This is
corroborated by computing σ (A)={5, (1±5

√
5)/2} ≈ {5, 6.0902, −5.0902}.

Example 7.1.6

Diagonally Dominant Matrices Revisited. Recall from Example 4.3.3 on
p. 184 that An×n is said to be diagonally dominant (some authors say strictly
diagonally dominant) whenever
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|aii| >
n∑

j=1
j �=i

|aij | for each i = 1, 2, . . . , n.

Gerschgorin’s theorem (7.1.13) guarantees that diagonally dominant matrices
cannot possess a zero eigenvalue. But 0 /∈ σ (A) if and only if A is nonsingular
(Exercise 7.1.6), so Gerschgorin’s theorem provides an alternative to the argu-
ment used in Example 4.3.3 to prove that all diagonally dominant matrices are

nonsingular .
68
For example, the 3× 3 matrix A in Example 7.1.5 is diagonally

dominant, and thus A is nonsingular. Even when a matrix is not diagonally
dominant, Gerschgorin estimates still may be useful in determining whether or
not the matrix is nonsingular simply by observing if zero is excluded from σ (A)
based on the configuration of the Gerschgorin circles given in (7.1.16).

Exercises for section 7.1

7.1.1. Determine the eigenvalues and eigenvectors for the following matrices.

A =

(
−10 −7
14 11

)
. B =




2 16 8
4 14 8
−8 −32 −18


 . C =



3 −2 5
0 1 4
0 −1 5


 .

D =




0 6 3
−1 5 1
−1 2 4


 . E =



3 0 0
0 3 0
0 0 3


 .

Which, if any, are deficient in eigenvectors in the sense that there fails
to exist a complete linearly independent set?

7.1.2. Without doing an eigenvalue–eigenvector computation, determine which
of the following are eigenvectors for

A =




−9 −6 −2 −4
−8 −6 −3 −1
20 15 8 5
32 21 7 12


 ,

and for those which are eigenvectors, identify the associated eigenvalue.

(a)




−1
1
0
1


 . (b)




1
0
−1
0


 . (c)




−1
0
2
2


 . (d)




0
1
−3
0


 .

68
In fact, this result was the motivation behind the original development of Gerschgorin’s circles.
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7.1.3. Explain why the eigenvalues of triangular and diagonal matrices

T =




t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn


 and D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




are simply the diagonal entries—the tii ’s and λi ’s.

7.1.4. For T =
(

A B
0 C

)
, prove det (T− λI) = det (A− λI)det (C− λI) to

conclude that σ
(

A B
0 C

)
= σ (A) ∪ σ (C) for square A and C.

7.1.5. Determine the eigenvectors of D = diag (λ1, λ2, . . . , λn) . In particular,
what is the eigenspace associated with λi?

7.1.6. Prove that 0 ∈ σ (A) if and only if A is a singular matrix.

7.1.7. Explain why it’s apparent that An×n =




n 1 1 · · · 1
1 n 1 · · · 1
1 1 n · · · 1
...

...
...
. . .

...
1 1 1 · · · n


 doesn’t

have a zero eigenvalue, and hence why A is nonsingular.

7.1.8. Explain why the eigenvalues of A∗A and AA∗ are real and nonneg-
ative for every A ∈ Cm×n. Hint: Consider ‖Ax‖22 / ‖x‖

2
2 . When are

the eigenvalues of A∗A and AA∗ strictly positive?

7.1.9. (a) If A is nonsingular, and if (λ, x) is an eigenpair for A, show
that

(
λ−1, x

)
is an eigenpair for A−1.

(b) For all α /∈ σ(A), prove that x is an eigenvector of A if and
only if x is an eigenvector of (A− αI)−1.

7.1.10. (a) Show that if (λ, x) is an eigenpair for A, then (λk, x) is an
eigenpair for Ak for each positive integer k.

(b) If p(x) = α0 +α1x+α2x
2 + · · ·+αkx

k is any polynomial, then
we define p(A) to be the matrix

p(A) = α0I+ α1A+ α2A
2 + · · ·+ αkA

k.

Show that if (λ, x) is an eigenpair for A, then (p(λ), x) is an
eigenpair for p(A).
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7.1.11. Explain why (7.1.14) in Gerschgorin’s theorem on p. 498 implies that

A =



1 0 −2 0
0 12 0 −4
1 0 −1 0
0 5 0 0


 must have at least two real eigenvalues. Cor-

roborate this fact by computing the eigenvalues of A.

7.1.12. If A is nilpotent (Ak = 0 for some k ), explain why trace (A) = 0.
Hint: What is σ (A)?

7.1.13. If x1, x2, . . . ,xk are eigenvectors of A associated with the same eigen-
value λ, explain why every nonzero linear combination

v = α1x1 + α2x2 + · · ·+ αnxn

is also an eigenvector for A associated with the eigenvalue λ.

7.1.14. Explain why an eigenvector for a square matrix A cannot be associated
with two distinct eigenvalues for A.

7.1.15. Suppose σ (An×n) = σ (Bn×n) . Does this guarantee that A and B
have the same characteristic polynomial?

7.1.16. Construct 2× 2 examples to prove the following statements.

(a) λ ∈ σ (A) and µ ∈ σ (B) �=⇒ λ+ µ ∈ σ (A+B) .

(b) λ ∈ σ (A) and µ ∈ σ (B) �=⇒ λµ ∈ σ (AB) .

7.1.17. Suppose that {λ1, λ2, . . . , λn} are the eigenvalues for An×n, and let
(λk, c) be a particular eigenpair.

(a) For λ /∈ σ (A) , explain why (A− λI)−1c = c/(λk − λ).

(b) For an arbitrary vector dn×1, prove that the eigenvalues of
A+ cdT agree with those of A except that λk is replaced by
λk + dT c.

(c) How can d be selected to guarantee that the eigenvalues of
A+cdT and A agree except that λk is replaced by a specified
number µ?
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7.1.18. Suppose that A is a square matrix.

(a) Explain why A and AT have the same eigenvalues.

(b) Explain why λ ∈ σ (A)⇐⇒ λ ∈ σ (A∗) .
Hint: Recall Exercise 6.1.8.

(c) Do these results imply that λ ∈ σ (A)⇐⇒ λ ∈ σ (A) when A
is a square matrix of real numbers?

(d) A nonzero row vector y∗ is called a left-hand eigenvector for
A whenever there is a scalar µ ∈ C such that y∗(A−µI) = 0.
Explain why µ must be an eigenvalue for A in the “right-hand”
sense of the term when A is a square matrix of real numbers.

7.1.19. Consider matrices Am×n and Bn×m.
(a) Explain why AB and BA have the same characteristic poly-

nomial if m = n. Hint: Recall Exercise 6.2.16.
(b) Explain why the characteristic polynomials for AB and BA

can’t be the same when m �= n, and then explain why σ (AB)
and σ (BA) agree, with the possible exception of a zero eigen-
value.

7.1.20. If AB = BA, prove that A and B have a common eigenvector.

Hint: For λ ∈ σ (A) , let the columns of X be a basis for N (A− λI)
so that (A − λI)BX = 0. Explain why there exists a matrix P such
that BX = XP, and then consider any eigenpair for P.

7.1.21. For fixed matrices Pm×m and Qn×n, let T be the linear operator on
Cm×n defined by T(A) = PAQ.

(a) Show that if x is a right-hand eigenvector for P and y∗ is a
left-hand eigenvector for Q, then xy∗ is an eigenvector for T.

(b) Explain why trace (T) = trace (P) trace (Q).

7.1.22. Let D = diag (λ1, λ2, . . . , λn) be a diagonal real matrix such that
λ1 < λ2 < · · · < λn, and let vn×1 be a column of real nonzero numbers.

(a) Prove that if α is real and nonzero, then λi is not an eigenvalue
for D+ αvvT . Show that the eigenvalues of D+ αvvT are in
fact given by the solutions of the secular equation f(ξ) = 0
defined by

f(ξ) = 1 + α

n∑

i=1

v2
i

λi − ξ
.

For n = 4 and α > 0, verify that the graph of f(ξ) is as de-
picted in Figure 7.1.4, and thereby conclude that the eigenvalues
of D+ αvvT interlace with those of D.
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ξ1 ξ2 ξ3 ξ4

λ1 λ2 λ3 λ4 λ4 + α

11

Figure 7.1.4

(b) Verify that (D− ξ I)
−1
v is an eigenvector for D+αvvT that

is associated with the eigenvalue ξi.

7.1.23. Newton’s Identities. Let λ1, . . . , λn be the roots of the polynomial
p(λ) = λn+ c1λ

n−1+ c2λ
n−2+ · · ·+ cn, and let τk = λk1 +λk2 + · · ·+λkn.

Newton’s identities say ck = −(τ1ck−1 + τ2ck−2 + · · ·+ τk−1c1 + τk)/k.
Derive these identities by executing the following steps:

(a) Show p′(λ) = p(λ)
∑n

i=1(λ−λi)
−1 (logarithmic differentiation).

(b) Use the geometric series expansion for (λ− λi)
−1

to show that
for |λ| > maxi|λi|,

n∑

i=1

1

(λ− λi)
=

n

λ
+

τ1
λ2

+
τ2
λ3

+ · · · .

(c) Combine these two results, and equate like powers of λ.

7.1.24. Leverrier–Souriau–Frame Algorithm.
69
Let the characteristic equa-

tion for A be given by λn+ c1λ
n−1+ c2λ

n−2+ · · ·+ cn = 0, and define
a sequence by taking B0 = I and

Bk = −
trace (ABk−1)

k
I+ABk−1 for k = 1, 2, . . . , n.

Prove that for each k,

ck = −
trace (ABk−1)

k
.

Hint: Use Newton’s identities, and recall Exercise 7.1.10(a).

69
This algorithm has been rediscovered and modified several times. In 1840, the Frenchman U.
J. J. Leverrier provided the basic connection with Newton’s identities. J. M. Souriau, also from
France, and J. S. Frame, from Michigan State University, independently modified the algo-
rithm to its present form—Souriau’s formulation was published in France in 1948, and Frame’s
method appeared in the United States in 1949. Paul Horst (USA, 1935) along with Faddeev
and Sominskii (USSR, 1949) are also credited with rediscovering the technique. Although the
algorithm is intriguingly beautiful, it is not practical for floating-point computations.
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7.2 DIAGONALIZATION BY SIMILARITY TRANSFORMATIONS

The correct choice of a coordinate system (or basis) often can simplify the form
of an equation or the analysis of a particular problem. For example, consider the
obliquely oriented ellipse in Figure 7.2.1 whose equation in the xy -coordinate
system is

13x2 + 10xy + 13y2 = 72.

By rotating the xy -coordinate system counterclockwise through an angle of 45◦

x

y

uv

Figure 7.2.1

into a uv -coordinate system by means of (5.6.13) on p. 326, the cross-product
term is eliminated, and the equation of the ellipse simplifies to become

u2

9
+

v2

4
= 1.

It’s shown in Example 7.6.3 on p. 567 that we can do a similar thing for quadratic
equations in ℜn.

Choosing or changing to the most appropriate coordinate system (or basis)
is always desirable, but in linear algebra it is fundamental. For a linear operator
L on a finite-dimensional space V, the goal is to find a basis B for V such
that the matrix representation of L with respect to B is as simple as possible.
Since different matrix representations A and B of L are related by a similarity
transformation P−1AP = B (recall §4.8),70 the fundamental problem for linear
operators is strictly a matrix issue—i.e., find a nonsingular matrix P such that
P−1AP is as simple as possible. The concept of similarity was first introduced
on p. 255, but in the interest of continuity it is reviewed below.

70
While it is helpful to have covered the topics in §§4.7–4.9, much of the subsequent development
is accessible without an understanding of this material.
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Similarity
• Two n× n matrices A and B are said to be similar whenever

there exists a nonsingular matrix P such that P−1AP = B. The
product P−1AP is called a similarity transformation on A.

• A Fundamental Problem. Given a square matrix A, reduce it to
the simplest possible form by means of a similarity transformation.

Diagonal matrices have the simplest form, so we first ask, “Is every square
matrix similar to a diagonal matrix?” Linear algebra and matrix theory would
be simpler subjects if this were true, but it’s not. For example, consider

A =

(
0 1
0 0

)
, (7.2.1)

and observe that A2 = 0 (A is nilpotent). If there exists a nonsingular matrix
P such that P−1AP = D, where D is diagonal, then

D2 = P−1APP−1AP = P−1A2P = 0 =⇒ D = 0 =⇒ A = 0,

which is false. Thus A, as well as any other nonzero nilpotent matrix, is not sim-
ilar to a diagonal matrix. Nonzero nilpotent matrices are not the only ones that
can’t be diagonalized, but, as we will see, nilpotent matrices play a particularly
important role in nondiagonalizability.

So, if not all square matrices can be diagonalized by a similarity transforma-
tion, what are the characteristics of those that can? An answer is easily derived
by examining the equation

P−1An×nP = D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


,

which implies A [P∗1 | · · · |P∗n] = [P∗1 | · · · |P∗n]




λ1 · · · 0
...

. . .
...

0 · · · λn


 or, equiva-

lently, [AP∗1 | · · · |AP∗n] = [λ1P∗1 | · · · |λnP∗n] . Consequently, AP∗j = λjP∗j
for each j, so each (λj ,P∗j) is an eigenpair for A. In other words, P−1AP = D
implies that P must be a matrix whose columns constitute n linearly indepen-
dent eigenvectors, and D is a diagonal matrix whose diagonal entries are the
corresponding eigenvalues. It’s straightforward to reverse the above argument to
prove the converse—i.e., if there exists a linearly independent set of n eigenvec-
tors that are used as columns to build a nonsingular matrix P, and if D is the
diagonal matrix whose diagonal entries are the corresponding eigenvalues, then
P−1AP = D. Below is a summary.
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Diagonalizability
• A square matrix A is said to be diagonalizable whenever A is

similar to a diagonal matrix.

• A complete set of eigenvectors for An×n is any set of n lin-
early independent eigenvectors for A. Not all matrices have com-
plete sets of eigenvectors—e.g., consider (7.2.1) or Example 7.1.2.
Matrices that fail to possess complete sets of eigenvectors are some-
times called deficient or defective matrices.

• An×n is diagonalizable if and only if A possesses a complete set of
eigenvectors. Moreover, P−1AP = diag (λ1, λ2, . . . , λn) if and only
if the columns of P constitute a complete set of eigenvectors and
the λj ’s are the associated eigenvalues—i.e., each (λj ,P∗j) is an
eigenpair for A.

Example 7.2.1

Problem: If possible, diagonalize the following matrix with a similarity trans-
formation:

A =




1 −4 −4
8 −11 −8
−8 8 5


 .

Solution: Determine whether or not A has a complete set of three linearly
independent eigenvectors. The characteristic equation—perhaps computed by
using (7.1.5)—is

λ3 + 5λ2 + 3λ− 9 = (λ− 1)(λ+ 3)2 = 0.

Therefore, λ = 1 is a simple eigenvalue, and λ = −3 is repeated twice (we
say its algebraic multiplicity is 2). Bases for the eigenspaces N (A− 1I) and
N (A+ 3I) are determined in the usual way to be

N (A− 1I) = span








1
2
−2






 and N (A+ 3I) = span







1
1
0


 ,



1
0
1






 ,

and it’s easy to check that when combined these three eigenvectors constitute a
linearly independent set. Consequently, A must be diagonalizable. To explicitly
exhibit the similarity transformation that diagonalizes A, set

P =




1 1 1
2 1 0
−2 0 1


 , and verify P−1AP =



1 0 0
0 −3 0
0 0 −3


 = D.
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Since not all square matrices are diagonalizable, it’s natural to inquire about
the next best thing—i.e., can every square matrix be triangularized by similarity?
This time the answer is yes, but before explaining why, we need to make the
following observation.

Similarity Preserves Eigenvalues
Row reductions don’t preserve eigenvalues (try a simple example). How-
ever, similar matrices have the same characteristic polynomial, so they
have the same eigenvalues with the same multiplicities. Caution! Sim-
ilar matrices need not have the same eigenvectors—see Exercise 7.2.3.

Proof. Use the product rule for determinants in conjunction with the fact that
det
(
P−1

)
= 1/det (P) (Exercise 6.1.6) to write

det (A− λI) = det
(
P−1BP− λI

)
= det

(
P−1(B− λI)P

)

= det
(
P−1

)
det (B− λI)det (P) = det (B− λI).

In the context of linear operators, this means that the eigenvalues of a matrix
representation of an operator L are invariant under a change of basis. In other
words, the eigenvalues are intrinsic to L in the sense that they are independent
of any coordinate representation.

Now we can establish the fact that every square matrix can be triangularized
by a similarity transformation. In fact, as Issai Schur (p. 123) realized in 1909,
the similarity transformation always can be made to be unitary.

Schur’s Triangularization Theorem
Every square matrix is unitarily similar to an upper-triangular matrix.
That is, for each An×n, there exists a unitary matrix U (not unique)
and an upper-triangular matrix T (not unique) such that U∗AU = T,
and the diagonal entries of T are the eigenvalues of A.

Proof. Use induction on n, the size of the matrix. For n = 1, there is nothing
to prove. For n > 1, assume that all n− 1× n− 1 matrices are unitarily similar
to an upper-triangular matrix, and consider an n× n matrix A. Suppose that
(λ,x) is an eigenpair for A, and suppose that x has been normalized so that
‖x‖2 = 1. As discussed on p. 325, we can construct an elementary reflector
R = R∗ = R−1 with the property that Rx = e1 or, equivalently, x = Re1

(set R = I if x = e1). Thus x is the first column in R, so R =
(
x |V

)
, and

RAR = RA
(
x |V

)
= R

(
λx |AV

)
=
(
λe1 |RAV

)
=

(
λ x∗AV
0 V∗AV

)
.
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Since V∗AV is n− 1× n− 1, the induction hypothesis insures that there exists
a unitary matrix Q such that Q∗(V∗AV)Q = T̃ is upper triangular. If U =

R
(
1 0
0 Q

)
, then U is unitary (because U∗ = U−1), and

U∗AU =

(
λ x∗AVQ
0 Q∗V∗AVQ

)
=

(
λ x∗AVQ
0 T̃

)
= T

is upper triangular. Since similar matrices have the same eigenvalues, and since
the eigenvalues of a triangular matrix are its diagonal entries (Exercise 7.1.3),
the diagonal entries of T must be the eigenvalues of A.

Example 7.2.2

The Cayley–Hamilton
71
theorem asserts that every square matrix satisfies

its own characteristic equation p(λ) = 0. That is, p(A) = 0.

Problem: Show how the Cayley–Hamilton theorem follows from Schur’s trian-
gularization theorem.

Solution: Schur’s theorem insures the existence of a unitary U such that
U∗AU = T is triangular, and the development allows for the eigenvalues A to
appear in any given order on the diagonal of T. So, if σ (A) = {λ1, λ2, . . . , λk}
with λi repeated ai times, then there is a unitary U such that

U∗AU=T=




T1 ⋆ · · · ⋆
T2 · · · ⋆

. . .
...
Tk


, where Ti=




λi ⋆ · · · ⋆
λi · · · ⋆

. . .
...
λi




ai×ai

.

Consequently, (Ti − λiI)
ai = 0, so (T− λiI)

ai has the form

(T− λiI)
ai =




⋆ · · · ⋆ · · · ⋆
. . .

...
...

0 · · · ⋆
. . .

...
⋆



←− ith row of blocks.

71
William Rowan Hamilton (1805–1865), an Irish mathematical astronomer, established this

result in 1853 for his quaternions, matrices of the form

(
a+ bi c+ di
−c+ di a − bi

)
that resulted

from his attempt to generalize complex numbers. In 1858 Arthur Cayley (p. 80) enunciated
the general result, but his argument was simply to make direct computations for 2 × 2 and
3× 3 matrices. Cayley apparently didn’t appreciate the subtleties of the result because he
stated that a formal proof “was not necessary.” Hamilton’s quaternions took shape in his mind
while walking with his wife along the Royal Canal in Dublin, and he was so inspired that he
stopped to carve his idea in the stone of the Brougham Bridge. He believed quaternions would
revolutionize mathematical physics, and he spent the rest of his life working on them. But the
world did not agree. Hamilton became an unhappy man addicted to alcohol who is reported
to have died from a severe attack of gout.
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This form insures that (T−λ1I)
a1(T−λ2I)

a2 · · · (T−λkI)
ak = 0. The charac-

teristic equation for A is p(λ) = (λ− λ1)
a1(λ− λ2)

a2 · · · (λ− λk)
ak = 0, so

U∗p(A)U = U∗(A− λ1I)
a1(A− λ2I)

a2 · · · (A− λkI)
akU

= (T− λ1I)
a1(T− λ2I)

a2 · · · (T− λkI)
ak = 0,

and thus p(A) = 0. Note: A completely different approach to the Cayley–
Hamilton theorem is discussed on p. 532.

Schur’s theorem is not the complete story on triangularizing by similarity.
By allowing nonunitary similarity transformations, the structure of the upper-
triangular matrix T can be simplified to contain zeros everywhere except on
the diagonal and the superdiagonal (the diagonal immediately above the main
diagonal). This is the Jordan form developed on p. 590, but some of the seeds
are sown here.

Multiplicities
For λ ∈ σ (A) = {λ1, λ2, . . . , λs} , we adopt the following definitions.
• The algebraic multiplicity of λ is the number of times it is re-

peated as a root of the characteristic polynomial. In other words,
alg multA (λi) = ai if and only if (x− λ1)

a1 · · · (x− λs)
as = 0 is

the characteristic equation for A.

• When alg multA (λ) = 1, λ is called a simple eigenvalue.

• The geometric multiplicity of λ is dimN (A− λI). In other
words, geo multA (λ) is the maximal number of linearly independent
eigenvectors associated with λ.

• Eigenvalues such that alg multA (λ) = geo multA (λ) are called
semisimple eigenvalues of A. It follows from (7.2.2) on p. 511
that a simple eigenvalue is always semisimple, but not conversely.

Example 7.2.3

The algebraic and geometric multiplicity need not agree. For example, the nilpo-

tent matrix A =
(
0 1
0 0

)
in (7.2.1) has only one distinct eigenvalue, λ = 0,

that is repeated twice, so alg multA (0) = 2. But

dimN (A− 0I) = dimN (A) = 1 =⇒ geo multA (0) = 1.

In other words, there is only one linearly independent eigenvector associated with
λ = 0 even though λ = 0 is repeated twice as an eigenvalue.

Example 7.2.3 shows that geo multA (λ) < alg multA (λ) is possible. How-
ever, the inequality can never go in the reverse direction.
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Multiplicity Inequality
For every A ∈ Cn×n, and for each λ ∈ σ(A),

geo multA (λ) ≤ alg multA (λ) . (7.2.2)

Proof. Suppose alg multA (λ) = k. Schur’s triangularization theorem (p. 508)

insures the existence of a unitary U such that U∗An×nU =
(

T11 T12

0 T22

)
,

where T11 is a k × k upper-triangular matrix whose diagonal entries are equal
to λ, and T22 is an n− k × n− k upper-triangular matrix with λ /∈ σ (T22) .
Consequently, T22 − λI is nonsingular, so

rank (A− λI) = rank (U∗(A− λI)U) = rank

(
T11 − λI T12

0 T22 − λI

)

≥ rank (T22 − λI) = n− k.

The inequality follows from the fact that the rank of a matrix is at least as great
as the rank of any submatrix—recall the result on p. 215. Therefore,

alg multA (λ) = k ≥ n− rank (A− λI) = dimN (A− λI) = geo multA (λ) .

Determining whether or not An×n is diagonalizable is equivalent to deter-
mining whether or not A has a complete linearly independent set of eigenvectors,
and this can be done if you are willing and able to compute all of the eigenvalues
and eigenvectors for A. But this brute force approach can be a monumental
task. Fortunately, there are some theoretical tools to help determine how many
linearly independent eigenvectors a given matrix possesses.

Independent Eigenvectors
Let {λ1, λ2, . . . , λk} be a set of distinct eigenvalues for A.

• If {(λ1,x1), (λ2,x2), . . . , (λk,xk)} is a set of eigenpairs for
A, then S = {x1,x2, . . . ,xk} is a linearly independent set.

(7.2.3)

• If Bi is a basis for N (A− λiI), then B = B1∪B2∪· · ·∪Bk
is a linearly independent set.

(7.2.4)
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Proof of (7.2.3). Suppose S is a dependent set. If the vectors in S are arranged
so that M = {x1,x2, . . . ,xr} is a maximal linearly independent subset, then

xr+1 =

r∑

i=1

αixi,

and multiplication on the left by A− λr+1I produces

0 =

r∑

i=1

αi (Axi − λr+1xi) =

r∑

i=1

αi (λi − λr+1)xi.

Because M is linearly independent, αi (λi − λr+1) = 0 for each i. Conse-
quently, αi = 0 for each i (because the eigenvalues are distinct), and hence
xr+1 = 0. But this is impossible because eigenvectors are nonzero. Therefore,
the supposition that S is a dependent set must be false.

Proof of (7.2.4). The result of Exercise 5.9.14 guarantees that B is linearly
independent if and only if

Mj = N (A− λjI) ∩
[
N (A− λ1I) +N (A− λ2I) + · · ·+N (A− λj−1I)

]
= 0

for each j = 1, 2, . . . , k. Suppose we have 0 �= x ∈ Mj for some j. Then
Ax = λjx and x = v1 + v2 + · · ·+ vj−1 for vi ∈ N (A− λiI), which implies

j−1∑

i=1

(λi − λj)vi =

j−1∑

i=1

λivi − λj

j−1∑

i=1

vi = Ax− λjx = 0.

By (7.2.3), the vi ’s are linearly independent, and hence λi − λj = 0 for each
i = 1, 2, . . . , j − 1. But this is impossible because the eigenvalues are distinct.
Therefore, Mj = 0 for each j, and thus B is linearly independent.

These results lead to the following characterization of diagonalizability.

Diagonalizability and Multiplicities
A matrix An×n is diagonalizable if and only if

geo multA (λ) = alg multA (λ) (7.2.5)

for each λ ∈ σ(A)—i.e., if and only if every eigenvalue is semisimple.
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Proof. Suppose geo multA (λi) = alg multA (λi) = ai for each eigenvalue λi.
If there are k distinct eigenvalues, and if Bi is a basis for N (A− λiI), then

B = B1 ∪B2 ∪ · · · ∪ Bk contains
∑k

i=1 ai = n vectors. We just proved in (7.2.4)
that B is a linearly independent set, so B represents a complete set of linearly
independent eigenvectors of A, and we know this insures that A must be
diagonalizable. Conversely, if A is diagonalizable, and if λ is an eigenvalue for
A with alg multA (λ) = a, then there is a nonsingular matrix P such that

P−1AP = D =

(
λIa×a 0
0 B

)
,

where λ /∈ σ(B). Consequently,

rank (A− λI) = rank P

(
0 0
0 B− λI

)
P−1 = rank (B− λI) = n− a,

and thus

geo multA (λ) = dimN (A− λI) = n− rank (A− λI) = a = alg multA (λ) .

Example 7.2.4

Problem: Determine if either of the following matrices is diagonalizable:

A =



−1 −1 −2
8 −11 −8

−10 11 7


 , B =




1 −4 −4
8 −11 −8
−8 8 5


 .

Solution: Each matrix has exactly the same characteristic equation

λ3 + 5λ2 + 3λ− 9 = (λ− 1)(λ+ 3)2 = 0,

so σ (A) = {1, −3} = σ (B) , where λ = 1 has algebraic multiplicity 1 and
λ = −3 has algebraic multiplicity 2. Since

geo multA (−3) = dimN (A+ 3I) = 1 < alg multA (−3) ,

A is not diagonalizable. On the other hand,

geo multB (−3) = dimN (B+ 3I) = 2 = alg multB (−3) ,

and geo multB (1) = 1 = alg multB (1) , so B is diagonalizable.

If An×n happens to have n distinct eigenvalues, then each eigenvalue is
simple. This means that geo multA (λ) = alg multA (λ) = 1 for each λ, so
(7.2.5) produces the following corollary guaranteeing diagonalizability.
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Distinct Eigenvalues
If no eigenvalue of A is repeated, then A is diagonalizable. (7.2.6)
Caution! The converse is not true—see Example 7.2.4.

Example 7.2.5

Toeplitz
72
matrices have constant entries on each diagonal parallel to the main

diagonal. For example, a 4× 4 Toeplitz matrix T along with a tridiagonal

Toeplitz matrix A are shown below:

T =




t0 t1 t2 t3
t−1 t0 t1 t2
t−2 t−1 t0 t1
t−3 t−2 t−1 t0


 , A =




t0 t1 0 0
t−1 t0 t1 0
0 t−1 t0 t1
0 0 t−1 t0


 .

Toeplitz structures occur naturally in a variety of applications, and tridiago-
nal Toeplitz matrices are commonly the result of discretizing differential equa-
tion problems—e.g., see §1.4 (p. 18) and Example 7.6.1 (p. 559). The Toeplitz
structure is rich in special properties, but tridiagonal Toeplitz matrices are par-
ticularly nice because they are among the few nontrivial structures that admit
formulas for their eigenvalues and eigenvectors.

Problem: Show that the eigenvalues and eigenvectors of

A =




b a
c b a

. . .
. . .

. . .

c b a
c b




n×n

with a �= 0 �= c

are given by

λj = b+ 2a
√

c/a cos

(
jπ

n+ 1

)
and xj =




(c/a)1/2 sin (1jπ/(n+ 1))
(c/a)2/2 sin (2jπ/(n+ 1))
(c/a)3/2 sin (3jπ/(n+ 1))

...
(c/a)n/2 sin (njπ/(n+ 1))




72
Otto Toeplitz (1881–1940) was a professor in Bonn, Germany, but because of his Jewish back-
ground he was dismissed from his chair by the Nazis in 1933. In addition to the matrix that
bears his name, Toeplitz is known for his general theory of infinite-dimensional spaces devel-
oped in the 1930s.
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for j = 1, 2, . . . , n, and conclude that A is diagonalizable.

Solution: For an eigenpair (λ,x), the components in (A− λI)x = 0 are
cxk−1+(b−λ)xk+axk+1 = 0, k = 1, . . . , n with x0 = xn+1 = 0 or, equivalently,

xk+2+

(
b− λ

a

)
xk+1+

( c
a

)
xk = 0 for k = 0, . . . , n− 1 with x0 = xn+1 = 0.

These are second-order homogeneous difference equations, and solving them is
similar to solving analogous differential equations. The technique is to seek solu-
tions of the form xk = ξrk for constants ξ and r. This produces the quadratic
equation r2 +(b−λ)r/a+ c/a = 0 with roots r1 and r2, and it can be argued
that the general solution of xk+2 + ((b− λ)/a)xk+1 + (c/a)xk = 0 is

xk =

{
αrk1 + βrk2 if r1 �= r2,

αρk + βkρk if r1 = r2 = ρ,
where α and β are arbitrary constants.

For the eigenvalue problem at hand, r1 and r2 must be distinct—otherwise
xk = αρk+βkρk, and x0 = xn+1 = 0 implies each xk = 0, which is impossible
because x is an eigenvector. Hence xk = αrk1 +βrk2 , and x0 = xn+1 = 0 yields

{
0 = α+ β
0 = αrn+1

1 + βrn+1
2

}
=⇒

(
r1
r2

)n+1

=
−β
α

= 1 =⇒ r1
r2

= ei2πj/(n+1),

so r1 = r2e
i2πj/(n+1) for some 1 ≤ j ≤ n. Couple this with

r2 +
(b− λ)r

a
+

c

a
= (r − r1)(r − r2) =⇒

{
r1r2 = c/a
r1 + r2 = −(b− λ)/a

to conclude that r1 =
√

c/a eiπj/(n+1), r2 =
√

c/a e−iπj/(n+1), and

λ = b+ a
√

c/a
(
eiπj/(n+1) + e−iπj/(n+1)

)
= b+ 2a

√
c/a cos

(
jπ

n+ 1

)
.

Therefore, the eigenvalues of A must be given by

λj = b+ 2a
√

c/a cos

(
jπ

n+ 1

)
, j = 1, 2, . . . , n.

Since these λj ’s are all distinct (cos θ is a strictly decreasing function of θ on
(0, π), and a �= 0 �= c), A must be diagonalizable—recall (7.2.6). Finally, the
kth component of any eigenvector associated with λj satisfies xk = αrk1 + βrk2
with α+ β = 0, so

xk = α
( c
a

)k/2(
eiπjk/(n+1) − e−iπjk/(n+1)

)
= 2iα

( c
a

)k/2
sin

(
jkπ

n+ 1

)
.
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Setting α = 1/2i yields a particular eigenvector associated with λj as

xj =




(c/a)1/2 sin (1jπ/(n+ 1))
(c/a)2/2 sin (2jπ/(n+ 1))
(c/a)3/2 sin (3jπ/(n+ 1))

...
(c/a)n/2 sin (njπ/(n+ 1))




.

Because the λj ’s are distinct, {x1,x2, . . . ,xn} is a complete linearly indepen-
dent set—recall (7.2.3)—so P =

(
x1 |x2 | · · · |xn

)
diagonalizes A.

It’s often the case that a right-hand and left-hand eigenvector for some
eigenvalue is known. Rather than starting from scratch to find additional eigen-
pairs, the known information can be used to reduce or “deflate” the problem to
a smaller one as described in the following example.

Example 7.2.6

Deflation. Suppose that right-hand and left-hand eigenvectors x and y∗ for an
eigenvalue λ of A ∈ ℜn×n are already known, so Ax = λx and y∗A = λy∗.
Furthermore, suppose y∗x �= 0—such eigenvectors are guaranteed to exist if λ
is simple or if A is diagonalizable (Exercises 7.2.23 and 7.2.22).

Problem: Use x and y∗ to deflate the size of the remaining eigenvalue problem.

Solution: Scale x and y∗ so that y∗x = 1, and construct Xn×n−1 so that its
columns are an orthonormal basis for y⊥. An easy way of doing this is to build
a reflector R =

[
ỹ |X

]
having ỹ = y/ ‖y‖2 as its first column as described on

p. 325. If P =
[
x |X

]
, then straightforward multiplication shows that

P−1 =

(
y∗

X∗(I− xy∗)

)
and P−1AP =

(
λ 0
0 B

)
,

where B = X∗AX is n− 1× n− 1. The eigenvalues of B constitute the re-
maining eigenvalues of A (Exercise 7.1.4), and thus an n× n eigenvalue prob-
lem is deflated to become one of size n− 1× n− 1.

Note: When A is symmetric, we can take x = y to be an eigenvector with

‖x‖2 = 1, so P = R = R−1, and RAR =
(

λ 0
0 B

)
in which B = BT .

An elegant and more geometrical way of expressing diagonalizability is now
presented to help simplify subsequent analyses and pave the way for extensions.
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Spectral Theorem for Diagonalizable Matrices
A matrix An×n with spectrum σ(A) = {λ1, λ2, . . . , λk} is diagonaliz-
able if and only if there exist matrices {G1,G2, . . . ,Gk} such that

A = λ1G1 + λ2G2 + · · ·+ λkGk, (7.2.7)

where the Gi ’s have the following properties.

• Gi is the projector onto N (A− λiI) along R (A− λiI). (7.2.8)

• GiGj = 0 whenever i �= j. (7.2.9)

• G1 +G2 + · · ·+Gk = I. (7.2.10)

The expansion (7.2.7) is known as the spectral decomposition of A,
and the Gi ’s are called the spectral projectors associated with A.

Proof. If A is diagonalizable, and if Xi is a matrix whose columns form a
basis for N (A− λiI), then P =

(
X1 |X2 | · · · |Xk

)
is nonsingular. If P−1 is

partitioned in a conformable manner, then we must have

A = PDP−1 =
(
X1 |X2 | · · · |Xk

)



λ1I 0 · · · 0
0 λ2I · · · 0
...

...
. . .

...
0 0 · · · λkI







YT
1

YT
2

...

YT
k




= λ1X1Y
T
1 + λ2X2Y

T
2 + · · ·+ λkXkY

T
k

= λ1G1 + λ2G2 + · · ·+ λkGk.

(7.2.11)

For Gi = XiY
T
i , the statement PP

−1 = I translates to
∑k

i=1Gi = I, and

P−1P = I =⇒ YT
i Xj =

{
I when i = j,
0 when i �= j,

=⇒
{
G2

i = Gi,
GiGj = 0 when i �= j.

To establish that R (Gi) = N (A− λiI), use R (AB) ⊆ R (A) (Exercise 4.2.12)
and YT

i Xi = I to write

R (Gi) = R(XiY
T
i ) ⊆ R (Xi) = R(XiY

T
i Xi) = R(GiXi) ⊆ R (Gi).

Thus R (Gi) = R (Xi) = N (A− λiI). To show N (Gi) = R (A− λiI), use

A =
∑k

j=1 λjGj with the already established properties of the Gi ’s to conclude

Gi(A− λiI) = Gi




k∑

j=1

λjGj − λi

k∑

j=1

Gj


 = 0 =⇒ R (A− λiI) ⊆ N (Gi).
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But we already know that N (A− λiI) = R (Gi), so

dimR (A− λiI) = n− dimN (A− λiI) = n− dimR (Gi) = dimN (Gi),

and therefore, by (4.4.6), R (A− λiI) = N (Gi). Conversely, if there exist ma-
trices Gi satisfying (7.2.8)–(7.2.10), then A must be diagonalizable. To see
this, note that (7.2.8) insures dimR (Gi) = dimN (A− λiI) = geo multA (λi) ,

while (7.2.9) implies R (Gi) ∩ R (Gj) = 0 and R
(∑k

i=1Gi

)
=
∑k

i=1 R (Gi)
(Exercise 5.9.17). Use these with (7.2.10) in the formula for the dimension of a
sum (4.4.19) to write

n = dimR (I) = dimR (G1 +G2 + · · ·+Gk)

= dim [R (G1) +R (G2) + · · ·+R (Gk)]

= dimR (G1) + dimR (G2) + · · ·+ dimR (Gk)

= geo multA (λ1) + geo multA (λ2) + · · ·+ geo multA (λk) .

Since geo multA (λi) ≤ alg multA (λi) and
∑k

i=1 alg multA (λi) = n, the above
equation insures that geo multA (λi) = alg multA (λi) for each i, and, by
(7.2.5), this means A is diagonalizable.

Simple Eigenvalues and Projectors
If x and y∗ are respective right-hand and left-hand eigenvectors asso-
ciated with a simple eigenvalue λ ∈ σ (A) , then

G = xy∗/y∗x (7.2.12)

is the projector onto N (A− λI) along R (A− λI). In the context
of the spectral theorem (p. 517), this means that G is the spectral
projector associated with λ.

Proof. It’s not difficult to prove y∗x �= 0 (Exercise 7.2.23), and it’s clear that
G is a projector because G2 = x(y∗x)y∗/(y∗x)2 = G. Now determine R (G).
The image of any z is Gz = αx with α = y∗z/y∗x, so

R (G) ⊆ span {x} = N (A− λI) and dimR (G) = 1 = dimN (A− λI).

Thus R (G) = N (A− λI). To find N (G), recall N (G) = R (I−G) (see
(5.9.11), p. 386), and observe that y∗(A− λI) = 0 =⇒ y∗(I−G) = 0, so

R (A− λI)
⊥ ⊆ R (I−G)

⊥
= N (G)

⊥
=⇒N (G) ⊆ R (A− λI) (Exercise 5.11.5).

But dimN (G) = n−dimR (G) =n−1 =n−dimN (A− λI) = dimR (A− λI),
so N (G) = R (A− λI).
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Example 7.2.7

Problem: Determine the spectral projectors for A =

(
1 −4 −4
8 −11 −8

−8 8 5

)
.

Solution: This is the diagonalizable matrix from Example 7.2.1 (p. 507). Since
there are two distinct eigenvalues, λ1 = 1 and λ2 = −3, there are two spectral
projectors,

G1 = the projector onto N (A− 1I) along R (A− 1I),

G2 = the projector onto N (A+ 3I) along R (A+ 3I).

There are several different ways to find these projectors.
1. Compute bases for the necessary nullspaces and ranges, and use (5.9.12).
2. Compute Gi = XiY

T
i as described in (7.2.11). The required computations

are essentially the same as those needed above. Since much of the work has
already been done in Example 7.2.1, let’s complete the arithmetic. We have

P =




1 1 1
2 1 0
−2 0 1


 =

(
X1 |X2

)
, P−1 =




1 −1 −1
−2 3 2
2 −2 −1


 =

(
YT

1

YT
2

)
,

so

G1 = X1Y
T
1 =




1 −1 −1
2 −2 −2
−2 2 2


 , G2 = X2Y

T
2 =




0 1 1
−2 3 2
2 −2 −1


 .

Check that these are correct by confirming the validity of (7.2.7)–(7.2.10).
3. Since λ1 = 1 is a simple eigenvalue, (7.2.12) may be used to compute G1

from any pair of associated right-hand and left-hand eigenvectors x and yT .
Of course, P and P−1 are not needed to determine such a pair, but since P
and P−1 have been computed above, we can use X1 and YT

1 to make the
point that any right-hand and left-hand eigenvectors associated with λ1 = 1
will do the job because they are all of the form x = αX1 and yT = βYT

1

for α �= 0 �= β. Consequently,

G1 =
xyT

yTx
=

α




1
2
−2


β ( 1 −1 −1 )

αβ
=




1 −1 −1
2 −2 −2
−2 2 2


 .

Invoking (7.2.10) yields the other spectral projector as G2 = I−G1.
4. An even easier solution is obtained from the spectral theorem by writing

A− I = (1G1 − 3G2)− (G1 +G2) = −4G2,

A+ 3I = (1G1 − 3G2) + 3 (G1 +G2) = 4G1,
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so that

G1 =
(A+ 3I)

4
and G2 =

−(A− I)

4
.

Can you see how to make this rather ad hoc technique work in more general
situations?

5. In fact, the technique above is really a special case of a completely general
formula giving each Gi as a function A and λi as

Gi =

k∏
j=1
j �=i

(A− λjI)

k∏
j=1
j �=i

(λi − λj)

.

This “interpolation formula” is developed on p. 529.

Below is a summary of the facts concerning diagonalizability.

Summary of Diagonalizability
For an n× n matrix A with spectrum σ(A) = {λ1, λ2, . . . , λk} , the
following statements are equivalent.

• A is similar to a diagonal matrix—i.e., P−1AP = D.

• A has a complete linearly independent set of eigenvectors.

• Every λi is semisimple—i.e., geo multA (λi) = alg multA (λi) .

• A = λ1G1 + λ2G2 + · · ·+ λkGk, where

⊲ Gi is the projector onto N (A− λiI) along R (A− λiI),

⊲ GiGj = 0 whenever i �= j,

⊲ G1 +G2 + · · ·+Gk = I,

⊲ Gi =
k∏

j=1
j �=i

(A− λjI)
/ k∏

j=1
j �=i

(λi − λj) (see (7.3.11) on p. 529).

⊲ If λi is a simple eigenvalue associated with right-hand and left-
hand eigenvectors x and y∗, respectively, then Gi = xy∗/y∗x.

Exercises for section 7.2

7.2.1. Diagonalize A =
(
−8 −6
12 10

)
with a similarity transformation, or else

explain why A can’t be diagonalized.
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7.2.2. (a) Verify that alg multA (λ) = geo multA (λ) for each eigenvalue of

A =



−4 −3 −3
0 −1 0
6 6 5


 .

(b) Find a nonsingular P such that P−1AP is a diagonal matrix.

7.2.3. Show that similar matrices need not have the same eigenvectors by
giving an example of two matrices that are similar but have different
eigenspaces.

7.2.4. λ = 2 is an eigenvalue for A =

(
3 2 1
0 2 0

−2 −3 0

)
. Find alg multA (λ) as

well as geo multA (λ) . Can you conclude anything about the diagonal-
izability of A from these results?

7.2.5. If B = P−1AP, explain why Bk = P−1AkP.

7.2.6. Compute limn→∞An for A =
(
7/5 1/5
−1 1/2

)
.

7.2.7. Let {x1,x2, . . . ,xt} be a set of linearly independent eigenvectors for
An×n associated with respective eigenvalues {λ1, λ2, . . . , λt} , and let
X be any n× (n− t) matrix such that Pn×n =

(
x1 | · · · |xt |X

)
is

nonsingular. Prove that if P−1 =




y∗

1

...
y∗

t

Y∗


, where the y∗

i ’s are rows

and Y∗ is (n− t)× n, then {y∗
1,y

∗
2, . . . ,y

∗
t } is a set of linearly inde-

pendent left-hand eigenvectors associated with {λ1, λ2, . . . , λt} , respec-
tively (i.e., y∗

iA = λiy
∗
i ).

7.2.8. Let A be a diagonalizable matrix, and let ρ(⋆) denote the spectral
radius (recall Example 7.1.4 on p. 497). Prove that limk→∞Ak = 0 if
and only if ρ(A) < 1. Note: It is demonstrated on p. 617 that this
result holds for nondiagonalizable matrices as well.

7.2.9. Apply the technique used to prove Schur’s triangularization theorem
(p. 508) to construct an orthogonal matrix P such that PTAP is

upper triangular for A =
(
13 −9
16 −11

)
.
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7.2.10. Verify the Cayley–Hamilton theorem for A =

(
1 −4 −4
8 −11 −8

−8 8 5

)
.

Hint: This is the matrix from Example 7.2.1 on p. 507.

7.2.11. Since each row sum in the following symmetric matrix A is 4, it’s clear
that x = (1, 1, 1, 1)T is both a right-hand and left-hand eigenvector
associated with λ = 4 ∈ σ (A) . Use the deflation technique of Example
7.2.6 (p. 516) to determine the remaining eigenvalues of

A =




1 0 2 1
0 2 1 1
2 1 1 0
1 1 0 2


 .

7.2.12. Explain why AGi = GiA = λiGi for the spectral projector Gi asso-
ciated with the eigenvalue λi of a diagonalizable matrix A.

7.2.13. Prove that A = cn×1d
T
1×n is diagonalizable if and only if dT c �= 0.

7.2.14. Prove that A =
(

W 0
0 Z

)
is diagonalizable if and only if Ws×s and

Zt×t are each diagonalizable.

7.2.15. Prove that if AB = BA, then A and B can be simultaneously tri-
angularized by a unitary similarity transformation—i.e., U∗AU = T1

and U∗BU = T2 for some unitary matrix U. Hint: Recall Exercise
7.1.20 (p. 503) along with the development of Schur’s triangularization
theorem (p. 508).

7.2.16. For diagonalizable matrices, prove that AB = BA if and only if A
and B can be simultaneously diagonalized—i.e., P−1AP = D1 and
P−1BP = D2 for some P. Hint: If A and B commute, then so do

P−1AP =
(

λ1I 0
0 D

)
and P−1BP =

(
W X
Y Z

)
.

7.2.17. Explain why the following “proof” of the Cayley–Hamilton theorem is
not valid. p(λ) = det (A− λI) =⇒ p(A) = det (A−AI) = det (0) = 0.

7.2.18. Show that the eigenvalues of the finite difference matrix (p. 19)

A =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




n×n

are λj = 4 sin2 jπ

2(n+ 1)
, 1 ≤ j ≤ n.
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7.2.19. Let N =




0 1
. . .

. . .

. . . 1

0




n×n

.

(a) Show that λ ∈ σ
(
N+NT

)
if and only if iλ ∈ σ

(
N−NT

)
.

(b) Explain why N+NT is nonsingular if and only if n is even.
(c) Evaluate det

(
N−NT

)
/det

(
N+NT

)
when n is even.

7.2.20. A Toeplitz matrix having the form

C =




c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 · · · c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0




n×n

is called a circulant matrix . If p(x) = c0 + c1x + · · · + cn−1x
n−1,

and if {1, ξ, ξ2, . . . , ξn−1} are the nth roots of unity, then the results
of Exercise 5.8.12 (p. 379) insure that

FnCF
−1
n =




p(1) 0 · · · 0
0 p(ξ) · · · 0
...

...
. . .

...
0 0 · · · p(ξn−1)




in which Fn is the Fourier matrix of order n. Verify these facts for the
circulant below by computing its eigenvalues and eigenvectors directly:

C =




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1


 .

7.2.21. Suppose that (λ, x) and (µ, y∗) are right-hand and left-hand eigen-
pairs for A ∈ ℜn×n —i.e., Ax = λx and y∗A = µy∗. Explain why
y∗x = 0 whenever λ �= µ.

7.2.22. Consider A ∈ ℜn×n.
(a) Show that if A is diagonalizable, then there are right-hand and

left-hand eigenvectors x and y∗ associated with λ ∈ σ (A)
such that y∗x �= 0 so that we can make y∗x = 1.

(b) Show that not every right-hand and left-hand eigenvector x and
y∗ associated with λ ∈ σ (A) must satisfy y∗x �= 0.

(c) Show that (a) need not be true when A is not diagonalizable.
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7.2.23. Consider A ∈ ℜn×n with λ ∈ σ (A) .
(a) Prove that if λ is simple, then y∗x �= 0 for every pair of respec-

tive right-hand and left-hand eigenvectors x and y∗ associated
with λ regardless of whether or not A is diagonalizable. Hint:
Use the core-nilpotent decomposition on p. 397.

(b) Show that y∗x = 0 is possible when λ is not simple.

7.2.24. For A ∈ ℜn×n with σ (A) = {λ1, λ2, . . . , λk} , show A is diagonaliz-
able if and only if ℜn = N (A− λ1I)⊕N (A− λ2I)⊕· · ·⊕N (A− λkI).
Hint: Recall Exercise 5.9.14.

7.2.25. The Real Schur Form. Schur’s triangularization theorem (p. 508)
insures that every square matrix A is unitarily similar to an upper-
triangular matrix—say, U∗AU = T. But even when A is real, U
and T may have to be complex if A has some complex eigenvalues.
However, the matrices (and the arithmetic) can be constrained to be real
by settling for a block-triangular result with 2× 2 or scalar entries on
the diagonal. Prove that for each A ∈ ℜn×n there exists an orthogonal
matrix P ∈ ℜn×n and real matrices Bij such that

PTAP =




B11 B12 · · · B1k

0 B22 · · · B2k
...

...
. . .

...
0 0 · · · Bkk


 , where Bjj is 1× 1 or 2× 2.

If Bjj = [λj ] is 1× 1, then λj ∈ σ (A) , and if Bjj is 2× 2, then
σ (Bjj) = {λj , λj} ⊆ σ (A) .

7.2.26. When A ∈ ℜn×n is diagonalizable by a similarity transformation S,
then S may have to be complex if A has some complex eigenvalues.
Analogous to Exercise 7.2.25, we can stay in the realm of real numbers
by settling for a block-diagonal result with 1× 1 or 2× 2 entries on the
diagonal. Prove that if A ∈ ℜn×n is diagonalizable with real eigenvalues
{ρ1, . . . , ρr} and complex eigenvalues {λ1, λ1, λ2, λ2, . . . , λt, λt} with
2t+r = n, then there exists a nonsingular P ∈ ℜn×n and Bj ’s ∈ ℜ2×2

such that

P−1AP =




D 0 · · · 0
0 B1 · · · 0
...

...
. . .

...
0 0 · · · Bt


 , where D =




ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρr


,

and where Bj has eigenvalues λj and λj .



7.3 Functions of Diagonalizable Matrices 525

7.3 FUNCTIONS OF DIAGONALIZABLE MATRICES

For square matrices A, what should it mean to write sinA, eA, lnA, etc.?
A naive approach might be to simply apply the given function to each entry of
A such as

sin

(
a11 a12

a21 a22

)
?
=

(
sin a11 sin a12

sin a21 sin a22

)
. (7.3.1)

But doing so results in matrix functions that fail to have the same properties as
their scalar counterparts. For example, since sin2 x + cos2 x = 1 for all scalars
x, we would like our definitions of sinA and cosA to result in the analogous
matrix identity sin2A + cos2A = I for all square matrices A. The entrywise
approach (7.3.1) clearly fails in this regard.

One way to define matrix functions possessing properties consistent with
their scalar counterparts is to use infinite series expansions. For example, consider
the exponential function

ez =
∞∑

k=0

zk

k!
= 1 + z +

z2

2!
+

z3

3!
· · · . (7.3.2)

Formally replacing the scalar argument z by a square matrix A ( z0 = 1 is
replaced with A0 = I ) results in the infinite series of matrices

eA = I+A+
A2

2!
+
A3

3!
· · · , (7.3.3)

called the matrix exponential. While this results in a matrix that has properties
analogous to its scalar counterpart, it suffers from the fact that convergence must
be dealt with, and then there is the problem of describing the entries in the limit.
These issues are handled by deriving a closed form expression for (7.3.3).

If A is diagonalizable, then A = PDP−1 = Pdiag (λ1, . . . , λn)P
−1, and

Ak = PDkP−1 = P diag
(
λk1 , . . . , λ

k
n

)
P−1, so

eA =

∞∑

k=0

Ak

k!
=

∞∑

k=0

PDkP−1

k!
= P

( ∞∑

k=0

Dk

k!

)
P−1 = Pdiag

(
eλ1 , . . . , eλn

)
P−1.

In other words, we don’t have to use the infinite series (7.3.3) to define eA.
Instead, define eD = diag (eλ1 , eλ2 , . . . , eλn), and set

eA = PeDP−1 = Pdiag (eλ1 , eλ2 , . . . , eλn)P−1.

This idea can be generalized to any function f(z) that is defined on the
eigenvalues λi of a diagonalizable matrix A = PDP−1 by defining f(D) to
be f(D) = diag (f(λ1), f(λ2), . . . , f(λn)) and by setting

f(A) = Pf(D)P−1 = Pdiag (f(λ1), f(λ2), . . . , f(λn))P
−1. (7.3.4)
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At first glance this definition seems to have an edge over the infinite series ap-
proach because there are no convergence issues to deal with. But convergence
worries have been traded for uniqueness worries. Because P is not unique, it’s
not apparent that (7.3.4) is well defined. The eigenvector matrix P you compute
for a given A need not be the same as the eigenvector matrix I compute, so what
insures that your f(A) will be the same as mine? The spectral theorem (p. 517)
does. Suppose there are k distinct eigenvalues that are grouped according to
repetition, and expand (7.3.4) just as (7.2.11) is expanded to produce

f(A) = PDP−1 =
(
X1|X2| · · · |Xk

)



f(λ1)I 0 · · · 0
0 f(λ2)I · · · 0
...

...
. . .

...
0 0 · · · f(λk)I







YT
1

YT
2

...

YT
k




=

k∑

i=1

f(λi)XiY
T
i =

k∑

i=1

f(λi)Gi.

Since Gi is the projector onto N (A− λiI) along R (A− λiI), Gi is uniquely
determined by A. Therefore, (7.3.4) uniquely defines f(A) regardless of the
choice of P. We can now make a formal definition.

Functions of Diagonalizable Matrices
Let A = PDP−1 be a diagonalizable matrix where the eigenvalues in
D = diag (λ1I, λ2I, . . . , λkI) are grouped by repetition. For a function
f(z) that is defined at each λi ∈ σ (A) , define

f(A) = Pf(D)P−1 = P




f(λ1)I 0 · · · 0
0 f(λ2)I · · · 0
...

...
. . .

...
0 0 · · · f(λk)I


P−1 (7.3.5)

= f(λ1)G1 + f(λ2)G2 + · · ·+ f(λk)Gk, (7.3.6)

where Gi is the ith spectral projector as described on pp. 517, 529.
The generalization to nondiagonalizable matrices is on p. 603.

The discussion of matrix functions was initiated by considering infinite se-
ries, so, to complete the circle, a formal statement connecting infinite series with
(7.3.5) and (7.3.6) is needed. By replacing A by PDP−1 in

∑∞
n=0 cn(A−z0I)

n

and expanding the result, the following result is established.
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Infinite Series
If f(z) =

∑∞
n=0 cn(z − z0)

n converges when |z − z0| < r, and if
|λi − z0| < r for each eigenvalue λi of a diagonalizable matrix A, then

f(A) =
∞∑

n=0

cn(A− z0I)
n. (7.3.7)

It can be argued that the matrix series on the right-hand side of (7.3.7)
converges if and only if |λi−z0| < r for each λi, regardless of whether or
not A is diagonalizable. So (7.3.7) serves to define f(A) for functions
with series expansions regardless of whether or not A is diagonalizable.
More is said in Example 7.9.3 (p. 605).

Example 7.3.1

Neumann Series Revisited. The function f(z) = (1−z)−1 has the geometric
series expansion (1−z)−1 =

∑∞
k=1 z

k that converges if and only if |z| < 1. This
means that the associated matrix function f(A) = (I−A)−1 is given by

(I−A)−1 =

∞∑

k=0

Ak if and only if |λ| < 1 for all λ ∈ σ (A) . (7.3.8)

This is the Neumann series discussed on p. 126, where it was argued that
if limn→∞An = 0, then (I−A)−1 =

∑∞
k=0A

k. The two approaches are the
same because it turns out that limn→∞An = 0⇐⇒ |λ| < 1 for all λ ∈ σ (A) .
This is immediate for diagonalizable matrices, but the nondiagonalizable case is
a bit more involved—the complete statement is developed on p. 618. Because
maxi |λi| ≤ ‖A‖ for all matrix norms (Example 7.1.4, p. 497), a corollary of
(7.3.8) is that (I−A)−1 exists and

(I−A)−1 =

∞∑

k=0

Ak when ‖A‖ < 1 for any matrix norm. (7.3.9)

Caution! (I − A)−1 can exist without the Neumann series expansion being
valid because all that’s needed for I−A to be nonsingular is 1 /∈ σ (A) , while
convergence of the Neumann series requires each |λ| < 1.
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Example 7.3.2

Eigenvalue Perturbations. It’s often important to understand how the eigen-
values of a matrix are affected by perturbations. In general, this is a complicated
issue, but for diagonalizable matrices the problem is more tractable.

Problem: Suppose B = A+E, where A is diagonalizable, and let β ∈ σ (B) .
If P−1AP = D = diag (λ1, λ2, . . . , λn) , explain why

min
λi∈σ(A)

|β − λi| ≤ κ(P) ‖E‖ , where κ(P) = ‖P‖ ‖P−1‖ (7.3.10)

for matrix norms satisfying ‖D‖ = maxi |λi| (e.g., any standard induced norm).

Solution: Assume β �∈ σ (A)—(7.3.10) is trivial if β ∈ σ (A)—and observe
that

(βI−A)−1(βI−B) = (βI−A)−1(βI−A−E) = I− (βI−A)−1E

implies that 1 ≤ ‖(βI−A)−1E‖—otherwise I− (βI−A)−1E is nonsingular by
(7.3.9), which is impossible because (βI−B) (and hence (βI−A)−1(βI−B)
is singular). Consequently,

1 ≤ ‖(βI−A)−1E‖ = ‖P(βI−D)−1P−1E‖ ≤ ‖P‖ ‖(βI−D)−1‖ ‖P−1‖ ‖E‖

= κ(P) ‖E‖max
i
|β − λi|−1 = κ(P) ‖E‖ 1

mini |β − λi|
,

and this produces (7.3.10). Similar to the case of linear systems (Example 5.12.1,
p. 414), the expression κ(P) is a condition number in the sense that if κ(P) is
relatively small, then the λi ’s are relatively insensitive, but if κ(P) is relatively
large, we must be suspicious. Note: Because it’s a corollary of their 1960 results,
the bound (7.3.10) is often referred to as the Bauer–Fike bound .

Infinite series representations can always be avoided because every func-

tion of An×n can be expressed as a polynomial in A. In other words, when
f(A) exists, there is a polynomial p(z) such that p(A) = f(A). This is
true for all matrices, but the development here is limited to diagonalizable
matrices—nondiagonalizable matrices are treated in Exercise 7.3.7. In the di-
agonalizable case, f(A) exists if and only if f(λi) exists for each λi ∈ σ (A) =

{λ1, λ2, . . . , λk} , and, by (7.3.6), f(A) =
∑k

i=1 f(λi)Gi, where Gi is the ith

spectral projector. Any polynomial p(z) agreeing with f(z) on σ (A) does the
job because if p(λi) = f(λi) for each λi ∈ σ (A) , then

p(A) =

k∑

i=1

p(λi)Gi =

k∑

i=1

f(λi)Gi = f(A).
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But is there always a polynomial satisfying p(λi) = f(λi) for each λi ∈ σ (A)?
Sure—that’s what the Lagrange interpolating polynomial from Example 4.3.5
(p. 186) does. It’s given by

p(z)=
k∑

i=1



f(λi)

k∏
j=1
j �=i

(z − λj)

k∏
j=1
j �=i

(λi − λj)




, so f(A)=p(A)=

k∑

i=1



f(λi)

k∏
j=1
j �=i

(A− λjI)

k∏
j=1
j �=i

(λi − λj)




.

Using the function gi(z) =

{
1 if z = λi,
0 if z �= λi,

with this representation as well as

that in (7.3.6) yields
k∏

j=1
j �=i

(A− λjI)
/ k∏

j=1
j �=i

(λi − λj) = gi(A) = Gi. For example,

if σ (An×n) = {λ1, λ2, λ3}, then f(A) = f(λ1)G1 + f(λ2)G2 + f(λ3)G3 with

G1 =
(A−λ2I)(A−λ3I)

(λ1−λ2)(λ1−λ3)
, G2 =

(A−λ1I)(A−λ3I)

(λ2−λ1)(λ2−λ3)
, G3 =

(A−λ1I)(A−λ2I)

(λ3−λ1)(λ3−λ2)
.

Below is a summary of these observations.

Spectral Projectors
If A is diagonalizable with σ (A) = {λ1, λ2, . . . , λk} , then the spectral
projector onto N (A− λiI) along R (A− λiI) is given by

Gi =

k∏

j=1
j �=i

(A− λjI)
/ k∏

j=1
j �=i

(λi − λj) for i = 1, 2, . . . , k. (7.3.11)

Consequently, if f(z) is defined on σ (A) , then f(A) =
∑k

i=1 f(λi)Gi

is a polynomial in A of degree at most k − 1.

Example 7.3.3

Problem: For a scalar t, determine the matrix exponential eAt, where

A =

(
−α β
α −β

)
with α+ β �= 0.

Solution 1: The characteristic equation for A is λ2 + (α + β)λ = 0, so the
eigenvalues of A are λ1 = 0 and λ2 = −(α+β). Note that A is diagonalizable
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because no eigenvalue is repeated—recall (7.2.6). Using the function f(z) = ezt,
the spectral representation (7.3.6) says that

eAt = f(A) = f(λ1)G1 + f(λ2)G2 = eλ1tG1 + eλ2tG2.

The spectral projectors G1 and G2 are determined from (7.3.11) to be

G1 =
A− λ2I

−λ2
=

1

α+ β

(
β β
α α

)
and G2 =

A

λ2
=

1

α+ β

(
α −β
−α β

)
,

so

eAt = G1 + e−(α+β)tG2 =
1

α+ β

[(
β β
α α

)
+ e−(α+β)t

(
α −β
−α β

)]
.

Solution 2: Compute eigenpairs (λ1,x1) and (λ2,x2), construct P =
[
x1 |x2

]
,

and compute

eAt = P

(
f(λ1) 0
0 f(λ2)

)
P−1 = P

(
eλ1t 0
0 eλ2t

)
P−1.

The computational details are called for in Exercise 7.3.2.

Example 7.3.4

Problem: For T =
(
1/2 1/2
1/4 3/4

)
, evaluate limk→∞Tk.

Solution 1: Compute two eigenpairs, λ1 = 1, x1 = (1, 1)T , and λ2 = 1/4,

x2 = (−2, 1)T . If P = [x1 |x2], then T = P
(
1 0
0 1/4

)
P−1, so

Tk = P

(
1k 0
0 1/4k

)
P−1 → P

(
1 0
0 0

)
P−1 =

1

3

(
1 2
1 2

)
. (7.3.12)

Solution 2: We know from (7.3.6) that Tk = 1kG1 + (1/4)kG2 → G1. Since
λ1 = 1 is a simple eigenvalue, formula (7.2.12) on p. 518 can be used to compute
G1 = x1y

T
1 /y

T
1 x1, where x1 and yT1 are any right- and left-hand eigenvectors

associated with λ1 = 1. A right-hand eigenvector x1 was computed above.
Computing a left-hand eigenvector yT1 = (1, 2) yields

Tk → G1 =
x1y

T
1

yT1 x1
=

1

3

(
1 2
1 2

)
. (7.3.13)
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Example 7.3.5

Population Migration. Suppose that the population migration between two
geographical regions—say, the North and the South—is as follows. Each year,
50% of the population in the North migrates to the South, while only 25% of
the population in the South moves to the North. This situation is depicted by
drawing a transition diagram as shown below in Figure 7.3.1.

N S

.25

.5

.5 .75

Figure 7.3.1

Problem: If this migration pattern continues, will the population in the North
continually shrink until the entire population is eventually in the South, or will
the population distribution somehow stabilize before the North is completely
deserted?

Solution: Let nk and sk denote the respective proportions of the total popula-
tion living in the North and South at the end of year k, and assume nk+sk = 1.
The migration pattern dictates that the fractions of the population in each region
at the end of year k + 1 are

{
nk+1 = nk(.5) + sk(.25)

sk+1 = nk(.5) + sk(.75)

}
or, equivalently, pTk+1 = pTkT, (7.3.14)

where pTk = (nk sk ) and pTk+1 = (nk+1 sk+1 ) are the respective population
distributions at the end of years k and k + 1, and where

T =

( N S

N .5 .5
S .25 .75

)

is the associated transition matrix (recall Example 3.6.3). Inducting on

pT1 = pT0 T, pT2 = pT1 T = pT0 T
2, pT3 = pT2 T = pT0 T

3, · · ·

leads to pTk = pT0 T
k, which indicates that the powers of T determine how the

process evolves. Determining the long-run population distribution
73

is therefore

73
The long-run distribution goes by a lot of different names. It’s also called the limiting distri-
bution, the steady-state distribution, and the stationary distribution.
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accomplished by analyzing limk→∞Tk. The results of Example 7.3.4 together
with n0 + s0 = 1 yield the long-run (or limiting) population distribution as

pT∞ = lim
k→∞

pTk = lim
k→∞

pT0 T
k = pT0 lim

k→∞
Tk = (n0 s0 )

(
1/3 2/3
1/3 2/3

)

=
(
n0 + s0

3

2(n0 + s0)

3

)
=
(
1

3

2

3

)
.

So if the migration pattern continues to hold, then the population distribution
will eventually stabilize with 1/3 of the population being in the North and 2/3 of
the population in the South. And this is independent of the initial distribution!

Observations: This is an example of a broader class of evolutionary processes
known as Markov chains (p. 687), and the following observations are typical.
• It’s clear from (7.3.12) or (7.3.13) that the rate at which the population

distribution stabilizes is governed by how fast (1/4)k → 0. In other words,
the magnitude of the largest subdominant eigenvalue of T determines the
rate of evolution.

• For the dominant eigenvalue λ1 = 1, the column, x1, of 1’s is a right-
hand eigenvector (because T has unit row sums). This forces the limiting
distribution pT∞ to be a particular left-hand eigenvector associated with
λ1 = 1 because for an arbitrary left-hand eigenvector yT1 associated with
λ1 = 1, equation (7.3.13) in Example 7.3.4 insures that

pT∞ = lim
k→∞

pT0 T
k = pT0 lim

k→∞
Tk = pT0 G1 =

(pT0 x1)y
T
1

yT1 x1
=

yT1
yT1 x1

. (7.3.15)

The fact that pT0 T
k converges to an eigenvector is a special case of the

power method discussed in Example 7.3.7.
• Equation (7.3.15) shows why the initial distribution pT0 always drops away

in the limit. But pT0 is not completely irrelevant because it always affects
the transient behavior—i.e., the behavior of pTk = pT0 T

k for smaller k ’s.

Example 7.3.6

Cayley–Hamilton Revisited. The Cayley–Hamilton theorem (p. 509) says
that if p(λ) = 0 is the characteristic equation for A, then p(A) = 0. This is
evident for diagonalizable A because p(λi) = 0 for each λi ∈ σ (A) , so, by
(7.3.6), p(A) = p(λ1)G1 + p(λ2)G2 + · · ·+ p(λk)Gk = 0.

Problem: Establish the Cayley–Hamilton theorem for nondiagonalizable matri-
ces by using the diagonalizable result together with a continuity argument.

Solution: Schur’s triangularization theorem (p. 508) insures An×n = UTU∗

for a unitary U and an upper triangular T having the eigenvalues of A on the
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diagonal. For each ǫ �= 0, it’s possible to find numbers ǫi such that (λ1 + ǫ1),
(λ2 + ǫ2), . . . , (λn + ǫn) are distinct and

∑
ǫ2i = |ǫ|. Set

D(ǫ) = diag (ǫ1, ǫ2, . . . , ǫn) and B(ǫ) = U
(
T+D(ǫ)

)
U∗ = A+E(ǫ),

where E(ǫ) = UD(ǫ)U∗. The (λi + ǫi) ’s are the eigenvalues of B(ǫ) and
they are distinct, so B(ǫ) is diagonalizable—by (7.2.6). Consequently, B(ǫ)
satisfies its own characteristic equation 0 = pǫ(λ) = det (A+E(ǫ)− λI) for
each ǫ �= 0. The coefficients of pǫ(λ) are continuous functions of the entries in
E(ǫ) (recall (7.1.6)) and hence are continuous functions of the ǫi ’s. Combine
this with limǫ→0E(ǫ) = 0 to obtain 0 = limǫ→0 pǫ(B(ǫ)) = p(A).

Note: Embedded in the above development is the fact that every square com-
plex matrix is arbitrarily close to some diagonalizable matrix because for each
ǫ �= 0, we have ‖A−B(ǫ)‖F = ‖E(ǫ)‖F = ǫ (recall Exercise 5.6.9).

Example 7.3.7

Power method
74

is an iterative technique for computing a dominant eigenpair
(λ1,x) of a diagonalizable A ∈ ℜm×m with eigenvalues

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λk|.

Note that this implies λ1 is real—otherwise λ1 is another eigenvalue with the
same magnitude as λ1. Consider f(z) = (z/λ1)

n, and use the spectral repre-
sentation (7.3.6) along with |λi/λ1| < 1 for i = 2, 3, . . . , k to conclude that

(
A

λ1

)n

= f(A) = f(λ1)G1 + f(λ2)G2 + · · ·+ f(λk)Gk

= G1 +

(
λ2

λ1

)n

G2 + · · ·+
(
λk
λ1

)n

Gk → G1

(7.3.16)

as n→∞. Consequently, (Anx0/λ
n
1 )→ G1x0 ∈ N (A− λ1I) for all x0. So if

G1x0 �= 0 or, equivalently, x0 /∈ R (A− λ1I), then Anx0/λ
n
1 converges to an

eigenvector associated with λ1. This means that the direction of Anx0 tends
toward the direction of an eigenvector because λn1 acts only as a scaling factor
to keep the length of Anx0 under control. Rather than using λn1 , we can scale
Anx0 with something more convenient. For example, ‖Anx0‖ (for any vector
norm) is a reasonable scaling factor, but there are even better choices. For vectors
v, let m(v) denote the component of maximal magnitude, and if there is more

74
While the development of the power method was considered to be a great achievement when
R. von Mises introduced it in 1929, later algorithms relegated its computational role to that of
a special purpose technique. Nevertheless, it’s still an important idea because, in some way or
another, most practical algorithms for eigencomputations implicitly rely on the mathematical
essence of the power method.
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than one maximal component, let m(v) be the first maximal component—e.g.,
m(1, 3,−2) = 3, and m(−3, 3,−2) = −3. It’s clear that m(αv) = αm(v) for
all scalars α. Suppose m(Anx0/λ

n
1 )→ γ. Since (An/λn1 )→ G1, we see that

lim
n→∞

Anx0

m(Anx0)
= lim

n→∞
(An/λn1 )x0

m(Anx0/λn1 )
=
G1x0

γ
= x

is an eigenvector associated with λ1. But rather than successively powering
A, the sequence Anx0/m(Anx0) is more efficiently generated by starting with
x0 /∈ R (A− λ1I) and setting

yn = Axn, νn = m(yn), xn+1 =
yn
νn

, for n = 0, 1, 2, . . . . (7.3.17)

Not only does xn → x, but as a bonus we get νn → λ1 because for all n,
Axn+1 = A2xn/νn, so if νn → ν as n → ∞, the limit on the left-hand side
is Ax = λ1x, while the limit on the right-hand side is A2x/ν = λ2

1x/ν. Since
these two limits must agree, λ1x = (λ2

1/ν)x, and this implies ν = λ1.

Summary. The sequence (νn, xn) defined by (7.3.17) converges to an eigenpair
(λ1, x) for A provided that G1x0 �= 0 or, equivalently, x0 /∈ R (A− λ1I).

⊲ Advantages. Each iteration requires only one matrix–vector product, and
this can be exploited to reduce the computational effort when A is large
and sparse—assuming that a dominant eigenpair is the only one of interest.

⊲ Disadvantages. Only a dominant eigenpair is determined—something else
must be done if others are desired. Furthermore, it’s clear from (7.3.16) that
the rate at which (7.3.17) converges depends on how fast (λ2/λ1)

n → 0, so
convergence is slow when |λ1| is close to |λ2|.

Example 7.3.8

Inverse Power Method. Given a real approximation α /∈ σ(A) to any real
λ ∈ σ(A), this algorithm (also called the inverse iteration) determines an
eigenpair (λ,x) for a diagonalizable matrix A ∈ ℜm×m by applying the power

method
75

to B = (A− αI)−1. Recall from Exercise 7.1.9 that

x is an eigenvector for A⇐⇒ x is an eigenvector for B,

λ ∈ σ(A)⇐⇒ (λ− α)−1 ∈ σ(B).
(7.3.18)

If |λ− α| < |λi − α| for all other λi ∈ σ(A), then (λ− α)−1 is the dominant
eigenvalue of B because |λ−α|−1 > |λi−α|−1. Therefore, applying the power

75
The relation between the power method and inverse iteration is clear to us now, but it originally
took 15 years to make the connection. Inverse iteration was not introduced until 1944 by the
German mathematician Helmut Wielandt (1910–).
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method to B produces an eigenpair
(
(λ− α)−1,x

)
for B from which the

eigenpair (λ,x) for A is determined. That is, if x0 /∈ R (B− λI), and if

yn = Bxn = (A− αI)−1xn, νn = m(yn), xn+1 =
yn
νn

for n = 0, 1, 2, . . . ,

then (νn,xn)→
(
(λ− α)−1,x

)
, an eigenpair for B, so (7.3.18) guarantees that

(ν−1
n +α, xn)→ (λ,x), an eigenpair for A. Rather than using matrix inversion

to compute yn = (A − αI)−1xn, it’s more efficient to solve the linear system
(A − αI)yn = xn for yn. Because this is a system in which the coefficient
matrix remains the same from step to step, the efficiency is further enhanced by
computing an LU factorization of (A − αI) at the outset so that at each step
only one forward solve and one back solve (as described on pp. 146 and 153) are
needed to determine yn.

⊲ Advantages. Striking results are often obtained (particularly in the case of
symmetric matrices) with only one or two iterations, even when x0 is nearly
in R (B− λI) = R (A− λI). For α close to λ, computing an accurate
floating-point solution of (A − αI)yn = xn is difficult because A − αI is
nearly singular, and this almost surely guarantees that (A−αI)yn = xn is an
ill-conditioned system. But only the direction of the solution is important,
and the direction of a computed solution is usually reasonable in spite of
conditioning problems. Finally, the algorithm can be adapted to compute
approximations of eigenvectors associated with complex eigenvalues.

⊲ Disadvantages. Only one eigenpair at a time is computed, and an approxi-
mate eigenvalue must be known in advance. Furthermore, the rate of conver-
gence depends on how fast [(λ− α)/(λi − α)]

n → 0, and this can be slow
when there is another eigenvalue λi close to the desired λ. If λi is too
close to λ, roundoff error can divert inverse iteration toward an eigenvector
associated with λi instead of λ in spite of a theoretically correct α.

Note: In the standard version of inverse iteration a constant value of α is used at
each step to approximate an eigenvalue λ, but there is variation calledRayleigh
quotient iteration that uses the current iterate xn to improve the value of α
at each step by setting α = xTnAxn/x

T
nxn. The function R(x) = xTAx/xTx is

called the Rayleigh quotient. It can be shown that if x is a good approximation to
an eigenvector, then R(x) is a good approximation of the associated eigenvalue.
More is said about this in Example 7.5.1 (p. 549).

Example 7.3.9

The QR Iteration algorithm for computing the eigenvalues of a general ma-
trix came from an elegantly simple idea that was proposed by Heinz Rutishauser
in 1958 and refined by J. F. G. Francis in 1961-1962. The underlying concept is
to alternate between computing QR factors (Rutishauser used LU factors) and
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reversing their order as shown below. Starting with A1 = A ∈ ℜn×n,

Factor: A1 = Q1R1,

Set: A2 = R1Q1,

Factor: A2 = Q2R2,

Set: A3 = R2Q2,
...

In general, Ak+1 = RkQk, where Qk and Rk are the QR factors of Ak.
Notice that if Pk = Q1Q2 · · ·Qk, then each Pk is an orthogonal matrix such
that

PT
1 AP1 = QT

1 Q1R1Q1 = A2,

PT
2 AP2 = QT

2 Q
T
1 AQ1Q2 = QT

2 A2Q2 = A3,
...

PT
kAPk = Ak+1.

In other words, A2,A3,A4, . . . are each orthogonally similar to A, and hence
σ (Ak) = σ (A) for each k. But the process does more than just create a matrix
that is similar to A at each step. The magic lies in the fact that if the process
converges, then limk→∞Ak = R is an upper-triangular matrix in which the
diagonal entries are the eigenvalues of A. Indeed, if Pk→P, then

Qk = PT
k−1Pk → PTP = I and Rk = Ak+1Q

T
k → RI = R,

so

lim
k→∞

Ak = lim
k→∞

QkRk = R,

which is necessarily upper triangular having diagonal entries equal to the eigen-
values of A. However, as is often the case, there is a big gap between theory
and practice, and turning this clever idea into a practical algorithm requires sig-
nificant effort. For example, one obvious hurdle that needs to be overcome is the
fact that the R factor in a QR factorization has positive diagonal entries, so,
unless modifications are made, the “vanilla” version of the QR iteration can’t
converge for matrices with complex or nonpositive eigenvalues. Laying out all of
the details and analyzing the rigors that constitute the practical implementation
of the QR iteration is tedious and would take us too far astray, but the basic
principals are within our reach.

• Hessenberg Matrices. A big step in turning the QR iteration into a prac-
tical method is to realize that everything can be done with upper-Hessenberg
matrices. As discussed in Example 5.7.4 (p. 350), Householder reduction
can be used to produce an orthogonal matrix P such that PTAP = H1,
and Example 5.7.5 (p. 352) shows that Givens reduction easily produces
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the QR factors of any Hessenberg matrix. Givens reduction on H1 pro-
duces the Q factor of H1 as the transposed product of plane rotations
Q1 = PT

12P
T
23 · · ·PT

(n−1)n, and this is also upper Hessenberg (constructing a

4× 4 example will convince you). Since multiplication by an upper-triangular
matrix can’t alter the upper-Hessenberg structure, the matrix R1Q1 = H2

at the second step of the QR iteration is again upper Hessenberg, and so
on for each successive step. Being able to iterate with Hessenberg matrices
results in a significant reduction of arithmetic. Note that if A = AT , then
Hk = HT

k for each k, which means that each Hk is tridiagonal in structure.

• Convergence. When the Hk ’s converge, the entries at the bottom of the
first subdiagonal tend to die first—i.e., a typical pattern might be

Hk =




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ǫ ⋆


 .

When ǫ is satisfactorily small, take ⋆ (the (n, n)-entry) to be an eigenvalue,
and deflate the problem. An even nicer state of affairs is to have a zero (or a
satisfactorily small) entry in row n− 1 and column 2 (illustrated below for
n = 4)

Hk =




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ǫ ⋆ ⋆
0 0 ⋆ ⋆


 (7.3.19)

because the trailing 2× 2 block
(

⋆ ⋆
⋆ ⋆

)
will yield two eigenvalues by the

quadratic formula, and thus complex eigenvalues can be revealed.

• Shifts. Instead of factoring Hk at the kth step, factor a shifted matrix
Hk − αkI = QkRk, and set Hk+1 = RkQk + αkI, where αk is an ap-
proximate real eigenvalue—a good candidate is αk = [Hk]nn. Notice that
σ (Hk+1) = σ (Hk) because Hk+1 = QT

kHkQk. The inverse power method
is now at work. To see how, drop the subscripts, and write H− αI = QR
as QT = R(H − αI)−1. If α ≈ λ ∈ σ (H) = σ (A) (say, |λ − α| = ǫ with
α, λ ∈ ℜ), then the discussion concerning the inverse power method in Exam-
ple 7.3.8 insures that the rows in QT are close to being left-hand eigenvectors
of H associated with λ. In particular, if qTn is the last row in QT , then

rnne
T
n = eTnR = qTnQR = qTn (H− αI) = qTnH− αqTn ≈ (λ− α)qTn ,

so rnn = |rnn| ≈
∥∥(λ− α)qTn

∥∥
2
= ǫ and qTn ≈ ±eTn . The significance of this
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is revealed by looking at a generic 4× 4 pattern for

Hk+1 = RQ+ αI

≈




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ǫ






∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 ∗ ∗ 0
0 0 ⋆ ±1


+




α
α

α
α




=




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ǫ⋆ α ± ǫ


 ≈




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 α ± ǫ


 .

The strength of the last approximation rests not only on the size of ǫ, but
it is also reinforced by the fact that ⋆ ≈ 0 because the 2-norm of the last
row of Q must be 1. This indicates why this technique (called the single

shifted QR iteration) can provide rapid convergence to a real eigenvalue. To
extract complex eigenvalues, a double shift strategy is employed in which the
eigenvalues αk and βk of the lower 2× 2 block of Hk are used as shifts
as indicated below:

Factor: Hk − αkI = QkRk,

Set: Hk+1 = RkQk + αkI (so Hk+1 = QT
kHkQk),

Factor: Hk+1 − βkI = Qk+1Rk+1,

Set: Hk+2 = Rk+1Qk+1 + βkI (so Hk+2 = QT
k+1Q

T
kHkQkQk+1),

...

The nice thing about the double shift strategy is that even when αk is
complex (so that βk = αk) the matrix QkQk+1 (and hence Hk+2) is
real, and there are efficient ways to form QkQk+1 by computing only the
first column of the product. The double shift method typically requires very
few iterations (using only real arithmetic) to produce a small entry in the
(n− 2, 2)-position as depicted in (7.3.19) for a generic 4× 4 pattern.

Exercises for section 7.3

7.3.1. Determine cos A for A =
(
−π/2 π/2

π/2 −π/2

)
.

7.3.2. For the matrix A in Example 7.3.3, verify with direct computation that

eλ1tG1 + eλ2tG2 = P
(
eλ1t 0
0 eλ2t

)
P−1 = eAt.

7.3.3. Explain why sin2A+ cos2A = I for a diagonalizable matrix A.
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7.3.4. Explain e0 = I for every square zero matrix.

7.3.5. The spectral mapping property for diagonalizable matrices says that
if f(A) exists, and if {λ1, λ2, . . . , λn} are the eigenvalues of An×n

(including multiplicities), then {f(λ1), . . . , f(λn)} are the eigenvalues
of f(A).

(a) Establish this for diagonalizable matrices.
(b) Establish this when an infinite series f(z) =

∑∞
n=0 cn(z − z0)

n

defines f(A) =
∑∞

n=0 cn(A− z0I)
n as discussed in (7.3.7).

7.3.6. Explain why det
(
eA
)
= etrace(A).

7.3.7. Suppose that for nondiagonalizable matrices Am×m an infinite series
f(z) =

∑∞
n=0 cn(z − z0)

n is used to define f(A) =
∑∞

n=0 cn(A− z0I)
n

as suggested in (7.3.7). Neglecting convergence issues, explain why there
is a polynomial p(z) of at most degree m− 1 such that f(A) = p(A).

7.3.8. If f(A) exists for a diagonalizable A, explain why Af(A) = f(A)A.
What can you say when A is not diagonalizable?

7.3.9. Explain why eA+B = eAeB whenever AB = BA. Give an example
to show that eA+B, eAeB, and eBeA all can differ when AB �= BA.
Hint: Exercise 7.2.16 can be used for the diagonalizable case. For the
general case, consider F(t) = e(A+B)t − eAteBt and F′(t).

7.3.10. Show that eA is an orthogonal matrix whenever A is skew symmetric.

7.3.11. A particular electronic device consists of a collection of switching circuits
that can be either in an ON state or an OFF state. These electronic
switches are allowed to change state at regular time intervals called clock

cycles. Suppose that at the end of each clock cycle, 30% of the switches
currently in the OFF state change to ON, while 90% of those in the ON
state revert to the OFF state.

(a) Show that the device approaches an equilibrium in the sense
that the proportion of switches in each state eventually becomes
constant, and determine these equilibrium proportions.

(b) Independent of the initial proportions, about how many clock
cycles does it take for the device to become essentially stable?
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7.3.12. The spectral radius of A is ρ(A) = maxλi∈σ(A) |λi| (p. 497). Prove
that if A is diagonalizable, then

ρ(A) = lim
n→∞

‖An‖1/n for every matrix norm.

This result is true for nondiagonalizable matrices as well, but the proof
at this point in the game is more involved. The full development is given
in Example 7.10.1 (p. 619).

7.3.13. Find a dominant eigenpair for A=

(
7 2 3
0 2 0

−6 −2 −2

)
by the power method.

7.3.14. Apply the inverse power method (Example 7.3.8, p. 534) to find an eigen-
vector for each of the eigenvalues of the matrix A in Exercise 7.3.13.

7.3.15. Explain why the function m(v) used in the development of the power
method in Example 7.3.7 is not a continuous function, so statements
like m(xn) → m(x) when xn → x are not valid. Nevertheless, if
limn→∞ xn �= 0, then limn→∞ m(xn) �= 0.

7.3.16. Let H =

(
1 0 0

−1 −2 −1
0 2 1

)
.

(a) Apply the “vanilla” QR iteration to H.
(b) Apply the the single shift QR iteration on H.

7.3.17. Show that the QR iteration can fail to converge using H =

(
0 0 1
1 0 0
0 1 0

)
.

(a) First use the “vanilla” QR iteration on H to see what happens.
(b) Now try the single shift QR iteration on H.
(c) Finally, execute the double shift QR iteration on H.
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7.4 SYSTEMS OF DIFFERENTIAL EQUATIONS

Systems of first-order linear differential equations with constant coefficients were
used in §7.1 to motivate the introduction of eigenvalues and eigenvectors, but
now we can delve a little deeper. For constants aij , the goal is to solve the
following system for the unknown functions ui(t).

u′
1 = a11u1 + a12u2 + · · ·+ a1nun,

u′
2 = a21u1 + a22u2 + · · ·+ a2nun,

...

u′
n = an1u1 + an2u2 + · · ·+ annun,

with

u1(0) = c1,

u2(0) = c2,

...

un(0) = cn.

(7.4.1)

Since the scalar exponential provides the unique solution to a single differential
equation u′(t) = αu(t) with u(0) = c as u(t) = eαtc, it’s only natural to try to
use the matrix exponential in an analogous way to solve a system of differential
equations. Begin by writing (7.4.1) in matrix form as u′ = Au, u(0) = c, where

u =




u1(t)
u2(t)
...

un(t)


 , A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 , and c =




c1
c2
...
cn


 .

If A is diagonalizable with σ(A) = {λ1, λ2, . . . , λk} , then (7.3.6) guarantees

eAt = eλ1tG1 + eλ2tG2 + · · ·+ eλktGk. (7.4.2)

The following identities are derived from properties of the Gi ’s given on p. 517.

• deAt/dt =
∑k

i=1 λie
λitGi =

(∑k
i=1 λiGi

)(∑k
i=1 e

λitGi

)
= AeAt. (7.4.3)

• AeAt = eAtA (by a similar argument). (7.4.4)

• e−AteAt = eAte−At = I = e0 (by a similar argument). (7.4.5)

Equation (7.4.3) insures that u = eAtc is one solution to u′ = Au, u(0) = c.
To see that u = eAtc is the only solution, suppose v(t) is another solution so
that v′ = Av with v(0) = c. Differentiating e−Atv produces

d
[
e−Atv

]

dt
= e−Atv′ − e−AtAv = 0, so e−Atv is constant for all t.
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At t = 0 we have e−Atv
∣∣
t=0

= e0v(0) = Ic = c, and hence e−Atv = c for

all t. Multiply both sides of this equation by eAt and use (7.4.5) to conclude
v = eAtc. Thus u = eAtc is the unique solution to u′ = Au with u(0) = c.

Finally, notice that vi = Gic ∈ N (A− λiI) is an eigenvector associated
with λi, so that the solution to u′ = Au, u(0) = c, is

u = eλ1tv1 + eλ2tv2 + · · ·+ eλktvk, (7.4.6)

and this solution is completely determined by the eigenpairs (λi,vi). It turns
out that u also can be expanded in terms of any complete set of independent
eigenvectors—see Exercise 7.4.1. Let’s summarize what’s been said so far.

Differential Equations
If An×n is diagonalizable with σ (A) = {λ1, λ2, . . . , λk} , then the
unique solution of u′ = Au, u(0) = c, is given by

u = eAtc = eλ1tv1 + eλ2tv2 + · · ·+ eλktvk (7.4.7)

in which vi is the eigenvector vi = Gic, where Gi is the ith spectral
projector. (See Exercise 7.4.1 for an alternate eigenexpansion.) Nonho-
mogeneous systems as well as the nondiagonalizable case are treated in
Example 7.9.6 (p. 608).

Example 7.4.1

An Application to Diffusion. Important issues in medicine and biology in-
volve the question of how drugs or chemical compounds move from one cell to
another by means of diffusion through cell walls. Consider two cells, as depicted
in Figure 7.4.1, which are both devoid of a particular compound. A unit amount
of the compound is injected into the first cell at time t = 0, and as time proceeds
the compound diffuses according to the following assumption.

Cell  1 Cell  2

α

β

Figure 7.4.1
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At each point in time the rate (amount per second) of diffusion from one cell to
the other is proportional to the concentration (amount per unit volume) of the
compound in the cell giving up the compound—say the rate of diffusion from
cell 1 to cell 2 is α times the concentration in cell 1, and the rate of diffusion
from cell 2 to cell 1 is β times the concentration in cell 2. Assume α, β > 0.

Problem: Determine the concentration of the compound in each cell at any
given time t, and, in the long run, determine the steady-state concentrations.

Solution: If uk = uk(t) denotes the concentration of the compound in cell k at
time t, then the statements in the above assumption are translated as follows:

du1

dt
= rate in − rate out = βu2 − αu1, where u1(0) = 1,

du2

dt
= rate in − rate out = αu1 − βu2, where u2(0) = 0.

In matrix notation this system is u′ = Au, u(0) = c, where

A =

(
−α β
α −β

)
, u =

(
u1

u2

)
, and c =

(
1
0

)
.

Since A is the matrix of Example 7.3.3 we can use the results from Example
7.3.3 to write the solution as

u(t) = eAtc =
1

α+ β

[(
β β
α α

)
+ e−(α+β)t

(
α −β
−α β

)](
1
0

)
,

so that

u1(t) =
β

α+ β
+

α

α+ β
e−(α+β)t and u2(t) =

α

α+ β

(
1− e−(α+β)t

)
.

In the long run, the concentrations in each cell stabilize in the sense that

lim
t→∞

u1(t) =
β

α+ β
and lim

t→∞
u2(t) =

α

α+ β
.

An innumerable variety of physical situations can be modeled by u′ = Au,
and the form of the solution (7.4.6) makes it clear that the eigenvalues and
eigenvectors of A are intrinsic to the underlying physical phenomenon being
investigated. We might say that the eigenvalues and eigenvectors of A act as its
genes and chromosomes because they are the basic components that either dic-
tate or govern all other characteristics of A along with the physics of associated
phenomena.
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For example, consider the long-run behavior of a physical system that can be
modeled by u′ = Au. We usually want to know whether the system will even-
tually blow up or will settle down to some sort of stable state. Might it neither
blow up nor settle down but rather oscillate indefinitely? These are questions
concerning the nature of the limit

lim
t→∞

u(t) = lim
t→∞

eAtc = lim
t→∞

(
eλ1tG1 + eλ2tG2 + · · ·+ eλktGk

)
c,

and the answers depend only on the eigenvalues. To see how, recall that for a
complex number λ = x+ iy and a real parameter t > 0,

eλt = e(x+iy)t = exteiyt = ext (cos yt+ i sin yt) . (7.4.8)

The term eiyt = (cos yt+ i sin yt) is a point on the unit circle that oscillates as a
function of t, so |eiyt| = |cos yt+ i sin yt| = 1 and

∣∣eλt
∣∣ = |exteiyt| = |ext| = ext.

This makes it clear that if Re (λi) < 0 for each i, then, as t→∞, eAt → 0,
and u(t)→ 0 for every initial vector c. Thus the system eventually settles down
to zero, and we say the system is stable. On the other hand, if Re (λi) > 0 for
some i, then components of u(t) may become unbounded as t → ∞, and
we say the system is unstable. Finally, if Re (λi) ≤ 0 for each i, then the
components of u(t) remain finite for all t, but some may oscillate indefinitely,
and this is called a semistable situation. Below is a summary of stability.

Stability
Let u′ = Au, u(0) = c, where A is diagonalizable with eigenvalues
λi.

• If Re (λi) < 0 for each i, then lim
t→∞

eAt = 0, and lim
t→∞

u(t) = 0

for every initial vector c. In this case u′ = Au is said to be a stable
system, and A is called a stable matrix.

• If Re (λi) > 0 for some i, then components of u(t) can become
unbounded as t → ∞, in which case the system u′ = Au as well
as the underlying matrix A are said to be unstable.

• If Re (λi) ≤ 0 for each i, then the components of u(t) remain
finite for all t, but some can oscillate indefinitely. This is called a
semistable situation.

Example 7.4.2

Predator–Prey Application. Consider two species of which one is the preda-
tor and the other is the prey, and assume there are initially 100 in each popula-
tion. Let u1(t) and u2(t) denote the respective population of the predator and
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prey species at time t, and suppose their growth rates are given by

u′
1 = u1 + u2,

u′
2 = −u1 + u2.

Problem: Determine the size of each population at all future times, and decide
if (and when) either population will eventually become extinct.

Solution: Write the system as u′ = Au, u(0) = c, where

A =

(
1 1
−1 1

)
, u =

(
u1

u2

)
, and c =

(
100
100

)
.

The characteristic equation for A is p(λ) = λ2− 2λ+2 = 0, so the eigenvalues
for A are λ1 = 1 + i and λ2 = 1− i. We know from (7.4.7) that

u(t) = eλ1tv1 + eλ2tv2 (where vi = Gic ) (7.4.9)

is the solution to u′ = Au, u(0) = c. The spectral theorem on p. 517 implies
A − λ2I = (λ1 − λ2)G1 and I = G1 +G2, so (A − λ2I)c = (λ1 − λ2)v1 and
c = v1 + v2, and consequently

v1 =
(A− λ2I)c

(λ1 − λ2)
= 50

(
λ2

λ1

)
and v2 = c− v1 = 50

(
λ1

λ2

)
.

With the aid of (7.4.8) we obtain the solution components from (7.4.9) as

u1(t) = 50
(
λ2e

λ1t + λ1e
λ2t
)
= 100et(cos t+ sin t)

and

u2(t) = 50
(
λ1e

λ1t + λ2e
λ2t
)
= 100et(cos t− sin t).

The system is unstable because Re (λi) > 0 for each eigenvalue. Indeed, u1(t)
and u2(t) both become unbounded as t → ∞. However, a population cannot
become negative–once it’s zero, it’s extinct. Figure 7.4.2 shows that the graph
of u2(t) will cross the horizontal axis before that of u1(t).

u1(t)

u2(t)

   t

0.2 0.4 0.6 0.8 1

-200

-100

100

200

300

400

0

Figure 7.4.2
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Therefore, the prey species will become extinct at the value of t for which
u2(t) = 0—i.e., when

100et(cos t− sin t) = 0 =⇒ cos t = sin t =⇒ t =
π

4
.

Exercises for section 7.4

7.4.1. Suppose that An×n is diagonalizable, and let P = [x1 |x2 | · · · |xn]
be a matrix whose columns are a complete set of linearly independent
eigenvectors corresponding to eigenvalues λi. Show that the solution to
u′ = Au, u(0) = c, can be written as

u(t) = ξ1e
λ1tx1 + ξ2e

λ2tx2 + · · ·+ ξne
λntxn

in which the coefficients ξi satisfy the algebraic system Pξ = c.

7.4.2. Using only the eigenvalues, determine the long-run behavior of the so-
lution to u′ = Au, u(0) = c for each of the following matrices.

(a) A =

(
−1 −2
0 −3

)
. (b) A =

(
1 −2
0 3

)
. (c) A =

(
1 −2
1 −1

)
.

7.4.3. Competing Species. Consider two species that coexist in the same
environment but compete for the same resources. Suppose that the pop-
ulation of each species increases proportionally to the number of its
own kind but decreases proportionally to the number in the competing
species—say that the population of each species increases at a rate equal
to twice its existing number but decreases at a rate equal to the number
in the other population. Suppose that there are initially 100 of species I
and 200 of species II.

(a) Determine the number of each species at all future times.
(b) Determine which species is destined to become extinct, and com-

pute the time to extinction.

7.4.4. Cooperating Species. Consider two species that survive in a sym-
biotic relationship in the sense that the population of each species de-
creases at a rate equal to its existing number but increases at a rate
equal to the existing number in the other population.

(a) If there are initially 200 of species I and 400 of species II, deter-
mine the number of each species at all future times.

(b) Discuss the long-run behavior of each species.



7.5 Normal Matrices 547

7.5 NORMAL MATRICES

A matrix A is diagonalizable if and only if A possesses a complete independent
set of eigenvectors, and if such a complete set is used for columns of P, then
P−1AP = D is diagonal (p. 507). But even when A possesses a complete in-
dependent set of eigenvectors, there’s no guarantee that a complete orthonormal

set of eigenvectors can be found. In other words, there’s no assurance that P
can be taken to be unitary (or orthogonal). And the Gram–Schmidt procedure
(p. 309) doesn’t help—Gram–Schmidt can turn a basis of eigenvectors into an
orthonormal basis but not into an orthonormal basis of eigenvectors. So when (or
how) are complete orthonormal sets of eigenvectors produced? In other words,
when is A unitarily similar to a diagonal matrix?

Unitary Diagonalization
A ∈ Cn×n is unitarily similar to a diagonal matrix (i.e., A has a com-
plete orthonormal set of eigenvectors) if and only if A∗A = AA∗, in
which case A is said to be a normal matrix.

• Whenever U∗AU = D with U unitary and D diagonal, the
columns of U must be a complete orthonormal set of eigenvectors
for A, and the diagonal entries of D are the associated eigenvalues.

Proof. If A is normal with σ (A) = {λ1, λ2, . . . , λk} , then A−λkI is also nor-
mal. All normal matrices are RPN (range is perpendicular to nullspace, p. 409),
so there is a unitary matrix Uk such that

U∗
k(A− λkI)Uk =

(
Ck 0
0 0

)
(by (5.11.15) on p. 408)

or, equivalently

U∗
kAUk =

(
Ck+λkI 0

0 λkI

)
=

(
Ak−1 0
0 λkI

)
,

where Ck is nonsingular and Ak−1 = Ck+λkI. Note that λk /∈ σ (Ak−1) (oth-
erwise Ak−1 − λkI = Ck would be singular), so σ (Ak−1) = {λ1, λ2, . . . , λk−1}
(Exercise 7.1.4). Because Ak−1 is also normal, the same argument can be re-
peated with Ak−1 and λk−1 in place A and λk to insure the existence of a
unitary matrix Uk−1 such that

U∗
k−1Ak−1Uk−1 =

(
Ak−2 0
0 λk−1I

)
,
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where Ak−2 is normal and σ (Ak−2) = {λ1, λ2, . . . , λk−2} . After k such rep-

etitions, Uk

(
Uk−1 0

0 I

)
· · ·
(

U1 0
0 I

)
= U is a unitary matrix such that

U∗AU =




λ1Ia1
0 · · · 0

0 λ2Ia2
· · · 0

...
...

. . .
...

0 0 · · · λkIak


 = D, ai = alg multA (λi) . (7.5.1)

Conversely, if there is a unitary matrix U such that U∗AU = D is diagonal,
then A∗A = UD∗DU∗ = U = UDD∗U∗ = AA∗, so A is normal.

Caution! While it’s true that normal matrices possess a complete orthonormal
set of eigenvectors, not all complete independent sets of eigenvectors of a normal
A are orthonormal (or even orthogonal)—see Exercise 7.5.6. Below are some
things that are true.

Properties of Normal Matrices
If A is a normal matrix with σ (A) = {λ1, λ2, . . . , λk} , then
• A is RPN—i.e., R (A) ⊥ N (A) (see p. 408).

• Eigenvectors corresponding to distinct eigenvalues are orthogonal. In
other words,

N (A− λiI) ⊥ N (A− λjI) for λi �= λj . (7.5.2)

• The spectral theorems (7.2.7) and (7.3.6) on pp. 517 and 526 hold,
but the spectral projectors Gi on p. 529 specialize to become orthog-
onal projectors because R (A− λiI) ⊥ N (A− λiI) for each λi.

Proof of (7.5.2). If A is normal, so is A− λjI, and hence A− λjI is RPN.
Consequently, N (A− λjI)

∗
= N (A− λjI)—recall (5.11.14) from p. 408. If

(λi,xi) and (λj ,xj) are distinct eigenpairs, then (A − λjI)
∗xj = 0, and 0 =

x∗
j (A− λjI)xi = x∗

jAxi − x∗
jλjxi = (λi − λj)x

∗
jxi implies 0 = x∗

jxi.

Several common types of matrices are normal. For example, real-symmetric
and hermitian matrices are normal, real skew-symmetric and skew-hermitian
matrices are normal, and orthogonal and unitary matrices are normal. By virtue
of being normal, these kinds of matrices inherit all of the above properties, but
it’s worth looking a bit closer at the real-symmetric and hermitian matrices
because they have some special eigenvalue properties.

If A is real symmetric or hermitian, and if (λ,x) is an eigenpair for A,
then x∗x �= 0, and λx = Ax implies λx∗ = x∗A∗, so

x∗x(λ− λ) = x∗(λ− λ)x = x∗Ax− x∗A∗x = 0 =⇒ λ = λ.
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In other words, eigenvalues of real-symmetric and hermitian matrices are real.
A similar argument (Exercise 7.5.4) shows that the eigenvalues of a real skew-
symmetric or skew-hermitian matrix are pure imaginary numbers.

Eigenvectors for a hermitian A ∈ Cn×n may have to involve complex num-
bers, but a real-symmetric matrix possesses a complete orthonormal set of real
eigenvectors. Consequently, the real-symmetric case can be distinguished by ob-
serving that A is real symmetric if and only if A is orthogonally similar to a
real-diagonal matrix D. Below is a summary of these observations.

Symmetric and Hermitian Matrices
In addition to the properties inherent to all normal matrices,

• Real-symmetric and hermitian matrices have real eigenvalues. (7.5.3)

• A is real symmetric if and only if A is orthogonally similar to a
real-diagonal matrix D—i.e., PTAP = D for some orthogonal P.

• Real skew-symmetric and skew-hermitian matrices have pure imag-
inary eigenvalues.

Example 7.5.1

Largest and Smallest Eigenvalues. Since the eigenvalues of a hermitian ma-
trix An×n are real, they can be ordered as λ1 ≥ λ2 ≥ · · · ≥ λn.

Problem: Explain why the largest and smallest eigenvalues can be described as

λ1 = max
‖x‖2=1

x∗Ax and λn = min
‖x‖2=1

x∗Ax. (7.5.4)

Solution: There is a unitary U such that U∗AU = D = diag (λ1, λ2, . . . , λn)
or, equivalently, A = UDU∗. Since ‖x‖2 = 1⇐⇒ ‖y‖2 = 1 for y = U∗x,

max
‖x‖2=1

x∗Ax = max
‖y‖2=1

y∗Dy = max
‖y‖2=1

n∑

i=1

λi|yi|2 ≤ max
‖y‖2=1

λ1

n∑

i=1

|yi|2 = λ1

with equality being attained when x is an eigenvector of unit norm associated
with λ1. The expression for the smallest eigenvalue λn is obtained by writing

min
‖x‖2=1

x∗Ax = min
‖y‖2=1

y∗Dy = min
‖y‖2=1

n∑

i=1

λi|yi|2 ≥ min
‖y‖2=1

λn

n∑

i=1

|yi|2 = λn,

where equality is attained at an eigenvector of unit norm associated with λn.
Note: The characterizations in (7.5.4) often appear in the equivalent forms

λ1 = max
x	=0

x∗Ax
x∗x

and λn = min
x	=0

x∗Ax
x∗x

.
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Consequently, λ1 ≥ (x∗Ax/x∗x) ≥ λn for all x �= 0. The term x∗Ax/x∗x
is referred to as a Rayleigh quotient in honor of the famous English physicist
John William Strutt (1842–1919) who became Baron Rayleigh in 1873.

It’s only natural to wonder if the intermediate eigenvalues of a hermitian
matrix have representations similar to those for the extreme eigenvalues as de-
scribed in (7.5.4). Ernst Fischer (1875–1954) gave the answer for matrices in 1905,
and Richard Courant (1888–1972) provided extensions for infinite-dimensional
operators in 1920.

Courant–Fischer Theorem
The eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn of a hermitian matrix An×n are

λi =max
dimV=i

min
x∈V

‖x‖2=1

x∗Ax and λi = min
dimV=n−i+1

max
x∈V

‖x‖2=1

x∗Ax. (7.5.5)

When i = 1 in the min-max formula and when i = n in the max-
min formula, V = Cn, so these cases reduce to the equations in (7.5.4).
Alternate max-min and min-max formulas are given in Exercise 7.5.12.

Proof. Only the min-max characterization is proven—the max-min proof is
analogous (Exercise 7.5.11). As shown in Example 7.5.1, a change of coordinates
y = U∗x with a unitary U such that U∗AU = D = diag (λ1, λ2, . . . , λn) has
the effect of replacing A by D, so we need only establish that

λi = min
dimV=n−i+1

max
y∈V

‖y‖2=1

y∗Dy.

For a subspace V of dimension n− i+1, let SV = {y ∈ V, ‖y‖2 = 1}, and let

S ′
V = {y ∈ V ∩ F , ‖y‖2 = 1}, where F = span {e1, e2, . . . , ei} .

Note that V ∩ F �= 0, for otherwise dim(V + F) = dimV + dimF = n + 1,
which is impossible. In other words, S ′

V contains those vectors of SV of the

form y = (y1, . . . , yi, 0, . . . , 0)
T with

∑i
j=1 |yj |2 = 1. So for each subspace V

with dimV = n− i+ 1,

y∗Dy =

i∑

j=1

λj |yj |2 ≥ λi

i∑

j=1

|yj |2 = λi for all y ∈ S ′
V .

Since S ′
V ⊆ SV , it follows that maxSV

y∗Dy ≥ maxS′
V
y∗Dy ≥ λi, and hence

min
V

max
SV

y∗Dy ≥ λi.
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But this inequality is reversible because if Ṽ = {e1, e2, . . . , ei−1}⊥ , then every
y ∈ Ṽ has the form y = (0, . . . , 0, yi, . . . , yn)

T , and hence

y∗Dy =

n∑

j=i

λj |yj |2 ≤ λi

n∑

j=i

|yj |2 = λi for all y ∈ SṼ .

So min
V

max
SV

y∗Dy ≤ max
SṼ

y∗Dy ≤ λi, and thus min
V

max
SV

y∗Dy = λi.

The value of the Courant–Fischer theorem is its ability to produce inequal-
ities concerning eigenvalues of hermitian matrices without involving the associ-
ated eigenvectors. This is illustrated in the following two important examples.

Example 7.5.2

Eigenvalue Perturbations. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of
a hermitian A ∈ Cn×n, and suppose A is perturbed by a hermitian E with
eigenvalues ǫ1 ≥ ǫ2 ≥ · · · ≥ ǫn to produce B = A+E, which is also hermitian.

Problem: If β1 ≥ β2 ≥ · · · ≥ βn are the eigenvalues of B, explain why

λi + ǫ1 ≥ βi ≥ λi + ǫn for each i. (7.5.6)

Solution: If U is a unitary matrix such that U∗AU = D = diag (λ1, . . . , λn),
then B̃ = U∗BU and Ẽ = U∗EU have the same eigenvalues as B and E,
respectively, and B̃ = D+Ẽ. For x ∈ F = span {e1, e2, . . . , ei} with ‖x‖2 = 1,

x = (x1, . . . , xi, 0, . . . , 0)
T and x∗Dx =

i∑

j=1

λj |xj |2 ≥ λi

i∑

j=1

|xj |2 = λi,

so applying the max-min part of the Courant–Fischer theorem to B̃ yields

βi =max
dimV=i

min
x∈V

‖x‖2=1

x∗B̃x ≥ min
x∈F

‖x‖2=1

x∗B̃x = min
x∈F

‖x‖2=1

(
x∗Dx+ x∗Ẽx

)

≥ min
x∈F

‖x‖2=1

x∗Dx+ min
x∈F

‖x‖2=1

x∗Ẽx ≥ λi + min
x∈Cn

‖x‖2=1

x∗Ẽx = λi + ǫn,

where the last equality is the result of the “min” part of (7.5.4). Similarly, for
x ∈ T = span {ei, . . . , en} with ‖x‖2 = 1, we have x∗Dx ≤ λi, and

βi = min
dimV=n−i+1

max
x∈V

‖x‖2=1

x∗B̃x ≤ max
x∈T

‖x‖2=1

x∗B̃x = max
x∈T

‖x‖2=1

(
x∗Dx+ x∗Ẽx

)

≤ max
x∈T

‖x‖2=1

x∗Dx+ max
x∈T

‖x‖2=1

x∗Ẽx ≤ λi + max
x∈Cn

‖x‖2=1

x∗Ẽx = λi + ǫ1.
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Note: Because E often represents an error, only ‖E‖ (or an estimate thereof)
is known. But for every matrix norm, |ǫj | ≤ ‖E‖ for each j (Example 7.1.4,
p. 497). Since the ǫj ’s are real, −‖E‖ ≤ ǫj ≤ ‖E‖ , so (7.5.6) guarantees that

λi − ‖E‖ ≤ βi ≤ λi + ‖E‖ . (7.5.7)

In other words,

• the eigenvalues of a hermitian matrix A are perfectly conditioned because a
hermitian perturbation E changes no eigenvalue of A by more than ‖E‖ .

It’s interesting to compare (7.5.7) with the Bauer–Fike bound of Example 7.3.2
(p. 528). When A is hermitian, (7.3.10) reduces to minλi∈σ(A) |β − λi| ≤ ‖E‖
because P can be made unitary, so, for induced matrix norms, κ(P) = 1. The
two results differ in that Bauer–Fike does not assume E and B are hermitian.

Example 7.5.3

Interlaced Eigenvalues. For a hermitian matrix A ∈ Cn×n with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn, and for c ∈ Cn×1, let B be the bordered matrix

B =

(
A c
c∗ α

)

n+1×n+1

with eigenvalues β1 ≥ β2 ≥ · · · ≥ βn ≥ βn+1.

Problem: Explain why the eigenvalues of A interlace with those of B in that

β1 ≥ λ1 ≥ β2 ≥ λ2 ≥ · · · ≥ βn ≥ λn ≥ βn+1. (7.5.8)

Solution: To see that βi ≥ λi ≥ βi+1 for 1 ≤ i ≤ n, let U be a unitary

matrix such that UTAU = D = diag (λ1, λ2, . . . , λn) . Since V =
(

U 0
0 1

)
is

also unitary, the eigenvalues of B agree with those of

B̃ = V∗BV =

(
D y
y∗ α

)
, where y = U∗c.

For x ∈ F = span {e1, e2, . . . , ei} ⊂ Cn+1×1 with ‖x‖2 = 1,

x = (x1, . . . , xi, 0, . . . , 0)
T and x∗B̃x =

n∑

j=1

λj |xj |2 ≥ λi

n∑

j=1

|xj |2 = λi,

so applying the max-min part of the Courant–Fisher theorem to B̃ yields

βi =max
dimV=i

min
x∈V

‖x‖2=1

x∗B̃x ≥ min
x∈F

‖x‖2=1

x∗B̃x ≥ λi.
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For x ∈ T = span{ei−1, ei, . . . , en} ⊂ Cn+1×1 with ‖x‖2 = 1,

x = (0, . . . , 0, xi−1, . . . , xn, 0)
T and x∗B̃x=

n∑

j=i−1

λj |xj |2 ≤ λi−1

n∑

j=i

|xj |2 = λi−1,

so the min-max part of the Courant–Fisher theorem produces

βi = min
dimV=n−i+2

max
x∈V

‖x‖2=1

x∗B̃x ≤ max
x∈F

‖x‖2=1

x∗B̃x ≤ λi−1.

Note: If A is any n× n principal submatrix of B, then (7.5.8) still holds
because each principal submatrix can be brought to the upper-left-hand corner
by a similarity transformation PTBP, where P is a permutation matrix. In
other words,

• the eigenvalues of an n+ 1× n+ 1 hermitian matrix are interlaced with the
eigenvalues of each of its n× n principal submatrices.

For A ∈ Cm×n (or ℜm×n), the products A∗A and AA∗ (or ATA and
AAT ) are hermitian (or real symmetric), so they are diagonalizable by a uni-
tary (or orthogonal) similarity transformation, and their eigenvalues are nec-
essarily real. But in addition to being real, the eigenvalues of these matrices
are always nonnegative. For example, if (λ,x) is an eigenpair of A∗A, then

λ = x∗A∗Ax/x∗x = ‖Ax‖22 / ‖x‖
2
2 ≥ 0, and similarly for the other products. In

fact, these λ ’s are the squares of the singular values for A developed in §5.12
(p. 411) because if

A = U

(
Dr×r 0
0 0

)

m×n

V∗

is a singular value decomposition, where D = diag (σ1, σ2, . . . , σr) contains the
nonzero singular values of A, then

V∗A∗AV =

(
D2 0
0 0

)
, (7.5.9)

and this means that (σ2
i ,vi) for i = 1, 2, . . . , r is an eigenpair for A∗A. In

other words, the nonzero singular values of A are precisely the positive square

roots of the nonzero eigenvalues of A∗A, and right-hand singular vectors vi of

A are particular eigenvectors of A∗A. Note that this establishes the uniqueness
of the σi ’s (but not the vi ’s), and pay attention to the fact that the number
of zero singular values of A need not agree with the number of zero eigenvalues
of A∗A—e.g., A1×2 = (1, 1) has no zero singular values, but A∗A has one
zero eigenvalue. The same game can be played with AA∗ in place of A∗A to
argue that the nonzero singular values of A are the positive square roots of
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the nonzero eigenvalues of AA∗, and left-hand singular vectors ui of A are
particular eigenvectors of AA∗.

Caution! The statement that right-hand singular vectors vi of A are eigenvec-
tors of A∗A and left-hand singular vectors ui of A are eigenvectors of AA∗

is a one-way street—it doesn’t mean that just any orthonormal sets of eigen-
vectors for A∗A and AA∗ can be used as respective right-hand and left-hand
singular vectors for A. The columns vi of any unitary matrix V that diago-
nalizes A∗A as in (7.5.9) can serve as right-hand singular vectors for A, but
corresponding left-hand singular vectors ui are constrained by the relationships

Avi = σiui, i = 1, 2, . . . , r =⇒ ui =
Avi
σi

=
Avi
‖Avi‖2

, i = 1, 2, . . . , r,

u∗
iA = 0, i = r + 1, . . . ,m =⇒ span {ur+1, ur+2, . . . ,um} = N (A∗).

In other words, the first r left-hand singular vectors for A are uniquely deter-
mined by the first r right-hand singular vectors, while the last m− r left-hand
singular vectors can be any orthonormal basis for N (A∗). If U is constructed
from V as described above, then U is guaranteed to be unitary because for

U=
[
u1 · · ·ur|ur+1 · · ·um

]
=
[
U1|U2

]
and V=

[
v1 · · ·vr|vr+1 · · ·vn

]
=
[
V1|V2

]
,

U1 and U2 each contain orthonormal columns, and, by using (7.5.9),

R (U1) = R
(
AV1D

−1
)
= R (AV1) = R (AV1D) = R

(
[AV1D][AV1D]

∗)

= R (AA∗AA∗) = R (AA∗) = R (A) = N (A∗)⊥ = R (U2)
⊥
.

The matrix V is unitary to start with, but, in addition,

R (V1) = R (V1D) = R ([V1D][V1D]∗) = R (A∗A) = R (A∗) and

R (V2) = R (A∗)⊥ = N (A).

These observations are consistent with those established on p. 407 for any
URV factorization. Otherwise something would be terribly wrong because an
SVD is just a special kind of a URV factorization. Finally, notice that there
is nothing special about starting with V to build a U—we can also take the
columns of any unitary U that diagonalizes AA∗ as left-hand singular vectors
for A and build corresponding right-hand singular vectors in a manner similar
to that described above. Below is a summary of the preceding developments
concerning singular values together with an additional observation connecting
singular values with eigenvalues.
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Singular Values and Eigenvalues
For A ∈ Cm×n with rank (A) = r, the following statements are valid.

• The nonzero eigenvalues of A∗A and AA∗ are equal and positive.

• The nonzero singular values of A are the positive square roots of
the nonzero eigenvalues of A∗A (and AA∗ ).

• If A is normal with nonzero eigenvalues {λ1, λ2, . . . , λr} , then the
nonzero singular values of A are {|λ1|, |λ2|, . . . , |λr|}.

• Right-hand and left-hand singular vectors for A are special eigen-
vectors for A∗A and AA∗, respectively.

• Any complete orthonormal set of eigenvectors vi for A
∗A can serve

as a complete set of right-hand singular vectors for A, and a cor-
responding complete set of left-hand singular vectors is given by
ui = Avi/ ‖Avi‖2, i = 1, 2, . . . , r, together with any orthonormal
basis {ur+1, ur+2, . . . ,um} for N (A∗). Similarly, any complete or-
thonormal set of eigenvectors for AA∗ can be used as left-hand sin-
gular vectors for A, and corresponding right-hand singular vectors
can be built in an analogous way.

• The hermitian matrix B =
(

0m×m A
A∗ 0n×n

)
of order m + n has

nonzero eigenvalues {±σ1,±σ2, . . . ,±σr} in which {σ1, σ2, . . . , σr}
are the nonzero singular values of A.

Proof. Only the last point requires proof, and this follows by observing that if
λ is an eigenvalue of B, then
(

0 A
A∗ 0

)(
x1

x2

)
= λ

(
x1

x2

)
=⇒

{
Ax2 = λx1

A∗x1 = λx2

}
=⇒ A∗Ax2 = λ2x2,

so each eigenvalue of B is the square of a singular value of A. But B is
hermitian with rank (B) = 2r, so there are exactly 2r nonzero eigenvalues of
B. Therefore, each pair ±σi, i = 1, 2, . . . , r, must be an eigenvalue for B.

Example 7.5.4

Min-Max Singular Values. Since the singular values of A are the positive
square roots of the eigenvalues of A∗A, and since ‖Ax‖2 = (x∗A∗Ax)1/2, it’s
a corollary of the Courant–Fischer theorem (p. 550) that if σ1 ≥ σ2 ≥ · · · ≥ σn
are the singular values for Am×n (n ≤ m), then

σi =max
dimV=i

min
x∈V

‖x‖2=1

‖Ax‖2 and σi = min
dimV=n−i+1

max
x∈V

‖x‖2=1

‖Ax‖2 .
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These expressions provide intermediate values between the extremes

σ1 = max
‖x‖2=1

‖Ax‖2 and σn = min
‖x‖2=1

‖Ax‖2 (see p. 414).

Exercises for section 7.5

7.5.1. Is A =
(
5 + i −2 i
2 4 + 2 i

)
a normal matrix?

7.5.2. Give examples of two distinct classes of normal matrices that are real
but not symmetric.

7.5.3. Show that A ∈ ℜn×n is normal and has real eigenvalues if and only if
A is symmetric.

7.5.4. Prove that the eigenvalues of a real skew-symmetric or skew-hermitian
matrix must be pure imaginary numbers (i.e., multiples of i ).

7.5.5. When trying to decide what’s true about matrices and what’s not, it
helps to think in terms of the following associations.

Hermitian matrices ←→ Real numbers (z = z).
Skew-hermitian matrices ←→ Imaginary numbers (z = −z).
Unitary matrices ←→ Points on the unit circle (z = eiθ).

For example, the complex function f(z) = (1− z)(1 + z)−1 maps the
imaginary axis in the complex plane to points on the unit circle because
|f(z)|2 = 1 whenever z = −z. It’s therefore reasonable to conjecture
(as Cayley did in 1846) that if A is skew hermitian (or real skew sym-
metric), then

f(A) = (I−A)(I+A)−1 = (I+A)−1(I−A) (7.5.10)

is unitary (or orthogonal). Prove this is indeed correct.Note: Expression
(7.5.10) has come to be known as the Cayley transformation .

7.5.6. Show by example that a normal matrix can have a complete independent
set of eigenvectors that are not orthonormal, and then explain how every
complete independent set of eigenvectors for a normal matrix can be
transformed into a complete orthonormal set of eigenvectors.
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7.5.7. Construct an example to show that the converse of (7.5.2) is false. In
other words, show that it is possible for N (A− λiI) ⊥ N (A− λjI)
whenever i �= j without A being normal.

7.5.8. Explain why a triangular matrix is normal if and only if it is diagonal.

7.5.9. Use the result of Exercise 7.5.8 to give an alternate proof of the unitary
diagonalization theorem given on p. 547.

7.5.10. For a normal matrix A, explain why (λ,x) is an eigenpair for A if
and only if (λ,x) is an eigenpair for A∗.

7.5.11. To see if you understand the proof of the min-max part of the Courant–
Fischer theorem (p. 550), construct an analogous proof for the max-min
part of (7.5.5).

7.5.12. The Courant–Fischer theorem has the following alternate formulation.

λi = max
v1,...,vn−i∈Cn

min
x⊥v1,...,vn−i

‖x‖2=1

x∗Ax and λi = min
v1,...,vi−1∈Cn

max
x⊥v1,...,vi−1

‖x‖2=1

x∗Ax

for 1 < i < n. To see if you really understand the proof of the min-
max part of (7.5.5), adapt it to prove the alternate min-max formulation
given above.

7.5.13. (a) Explain why every unitary matrix is unitarily similar to a diag-
onal matrix of the form

D =




eiθ1 0 · · · 0
0 eiθ2 · · · 0
...

...
. . .

...
0 0 · · · eiθn


.

(b) Prove that every orthogonal matrix is orthogonally similar to a
real block-diagonal matrix of the form

B =




±1
. . .

±1
cos θ1 sin θ1

− sin θ1 cos θ1

. . .
cos θt sin θt

− sin θt cos θt




.
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7.6 POSITIVE DEFINITE MATRICES

Since the symmetric structure of a matrix forces its eigenvalues to be real, what
additional property will force all eigenvalues to be positive (or perhaps just non-
negative)? To answer this, let’s deal with real-symmetric matrices—the hermi-
tian case follows along the same lines. If A ∈ ℜn×n is symmetric, then, as
observed above, there is an orthogonal matrix P such that A = PDPT , where
D = diag (λ1, λ2, . . . , λn) is real. If λi ≥ 0 for each i, then D1/2 exists, so

A = PDPT = PD1/2D1/2PT = BTB for B = D1/2PT ,

and λi > 0 for each i if and only if B is nonsingular. Conversely, if A can be
factored as A = BTB, then all eigenvalues of A are nonnegative because for
any eigenpair (λ,x),

λ =
xTAx

xTx
=
xTBTBx

xTx
=
‖Bx‖22
‖x‖22

≥ 0.

Moreover, if B is nonsingular, then N (B) = 0 =⇒ Bx �= 0, so λ > 0. In other
words, a real-symmetric matrix A has nonnegative eigenvalues if and only if A
can be factored as A = BTB, and all eigenvalues are positive if and only if B
is nonsingular . A symmetric matrix A whose eigenvalues are positive is called
positive definite, and when the eigenvalues are just nonnegative, A is said to
be positive semidefinite.

The use of this terminology is consistent with that introduced in Exam-
ple 3.10.7 (p. 154), where the term “positive definite” was used to designate
symmetric matrices possessing an LU factorization with positive pivots. It was
demonstrated in Example 3.10.7 that possessing positive pivots is equivalent to
the existence of a Cholesky factorization A = RTR, where R is upper trian-
gular with positive diagonal entries. By the result of the previous paragraph this
means that all eigenvalues of a symmetric matrix A are positive if and only if

A has an LU factorization with positive pivots.
But the pivots are intimately related to the leading principal minor deter-

minants. Recall from Exercise 6.1.16 (p. 474) that if Ak is the kth leading
principal submatrix of An×n, then the kth pivot is given by

ukk =

{
det (A1) = a11 for k = 1,

det (Ak)/det (Ak−1) for k = 2, 3, . . . , n.

Consequently, a symmetric matrix is positive definite if and only if each of its

leading principal minors is positive. However, if each leading principal minor
is positive, then all principal minors must be positive because if Pk is any
principal submatrix of A, then there is a permutation matrix Q such that
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Pk is a leading principal submatrix in C = QTAQ =
(

Pk ⋆
⋆ ⋆

)
, and, since

σ (A) = σ (C) , we have, with some obvious shorthand notation,

A ’s leading pm’s > 0⇒ A pd⇒ C pd⇒ det (Pk) > 0⇒ all of A ’s pm’s > 0.

Finally, observe that A is positive definite if and only if xTAx > 0 for

every nonzero x ∈ ℜn×1. If A is positive definite, then A = BTB for a
nonsingular B, so xTAx = xTBTBx = ‖Bx‖22 ≥ 0 with equality if and only if
Bx = 0 or, equivalently, x = 0. Conversely, if xTAx > 0 for all x �= 0, then
for every eigenpair (λ,x) we have λ = (xTAx/xTx) > 0.

Below is a formal summary of the results for positive definite matrices.

Positive Definite Matrices
For real-symmetric matrices A, the following statements are equivalent,
and any one can serve as the definition of a positive definite matrix.

• xTAx > 0 for every nonzero x ∈ ℜn×1 (most commonly used as
the definition).

• All eigenvalues of A are positive.

• A = BTB for some nonsingular B.

⊲ While B is not unique, there is one and only one upper-triangular
matrix R with positive diagonals such that A = RTR. This is
the Cholesky factorization of A (Example 3.10.7, p. 154).

• A has an LU (or LDU) factorization with all pivots being positive.

⊲ The LDU factorization is of the form A = LDLT = RTR, where
R = D1/2LT is the Cholesky factor of A (also see p. 154).

• The leading principal minors of A are positive.

• All principal minors of A are positive.

For hermitian matrices, replace (⋆)T by (⋆)∗ and ℜ by C.

Example 7.6.1

Vibrating Beads on a String. Consider n small beads, each having mass
m, spaced at equal intervals of length L on a very tightly stretched string
or wire under a tension T as depicted in Figure 7.6.1. Each bead is initially
displaced from its equilibrium position by a small vertical distance—say bead k
is displaced by an amount ck at t = 0. The beads are then released so that
they can vibrate freely.
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m m

L

Equilibrium Position A Typical Initial Position

Figure 7.6.1

Problem: For small vibrations, determine the position of each bead at time
t > 0 for any given initial configuration.

Solution: The small vibration hypothesis validates the following assumptions.

• The tension T remains constant for all time.
• There is only vertical motion (the horizontal forces cancel each other).
• Only small angles are involved, so the approximation sin θ ≈ tan θ is valid.

Let yk(t) = yk be the vertical distance of the kth bead from equilibrium at
time t, and set y0 = 0 = yn+1.

y
k–1

y
k

y
k+1

k–1 k k+1

θk–1

θk+1

θk

Figure 7.6.2

If θk is the angle depicted in Figure 7.6.2, the diagram above, then the upward
force on the kth bead at time t is Fu = T sin θk, while the downward force is
Fd = T sin θk−1, so the total force on the kth bead at time t is

F = Fu − Fd = T (sin θk − sin θk−1) ≈ T (tan θk − tan θk−1)

= T

(
yk+1 − yk

L
− yk − yk−1

L

)
=

T

L
(yk−1 − 2yk + yk+1).

Newton’s second law says force =mass× acceleration, so we set

my′′k =
T

L
(yk−1− 2yk+ yk+1) =⇒ y′′k +

T

mL
(−yk−1+2yk− yk+1) = 0 (7.6.1)

together with yk(0) = ck and y′k(0) = 0 to model the motion of the kth

bead. Altogether, equations (7.6.1) represent a system of n second-order linear
differential equations, and each is coupled to its neighbors so that no single
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equation can be solved in isolation. To extract solutions, the equations must
somehow be uncoupled, and here’s where matrix diagonalization works its magic.
Write equations (7.6.1) in matrix form as




y′′1
y′′2
y′′3
...
y′′n



+

T

mL




2 −1
−1 2 −1

−1 2
. . .

. . .
. . . −1
−1 2







y1

y2

y3
...
yn



=




0
0
0
...
0



, or y′′+Ay = 0,

(7.6.2)
with y(0) = c = (c1c2 · · · cn)T and y′(0) = 0. Since A is symmetric, there is
an orthogonal matrix P such that PTAP = D = diag (λ1, λ2, . . . , λn), where
the λi ’s are the eigenvalues of A. By making the substitution y = Pz (or,
equivalently, by changing the coordinate system), (7.6.2) is transformed into

z′′ +Dz = 0,
z(0) = PT c = c̃,
z′(0) = 0,

or




z′′1
z′′2
...
z′′n


+




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn







z1

z2
...
zn


 =




0
0
...
0


 .

In other words, by changing to a coordinate system defined by a complete set of
orthonormal eigenvectors for A, the original system (7.6.2) is completely uncou-
pled so that each equation z′′k+λkzk = 0 with zk(0) = c̃k and z′k(0) = 0 can be
solved independently. This helps reveal why diagonalizability is a fundamentally
important concept. Recall from elementary differential equations that

z′′k + λkzk = 0 =⇒ zk(t) =

{
αke

t
√
−λk + βke

−t
√
−λk when λk < 0,

αk cos
(
t
√
λk
)
+ βk sin

(
t
√
λk
)

when λk ≥ 0.

Vibrating beads suggest sinusoidal solutions, so we expect each λk > 0. In other
words, the mathematical model would be grossly inconsistent with reality if the
symmetric matrix A in (7.6.2) were not positive definite. It turns out that A
is positive definite because there is a Cholesky factorization A = RTR with

R =

√
T

mL




r1 −1/r1
r2 −1/r2

. . .
. . .

rn−1 −1/rn−1

rn




with rk =

√
2− k − 1

k
,

and thus we are insured that each λk > 0. In fact, since A is a tridiagonal
Toeplitz matrix, the results of Example 7.2.5 (p. 514) can be used to show that

λk =
2T

mL

(
1− cos

kπ

n+ 1

)
=

4T

mL
sin2 kπ

2(n+ 1)
(see Exercise 7.2.18).
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Therefore,




zk = αk cos
(
t
√
λk
)
+ βk sin

(
t
√
λk
)

zk(0) = c̃k
z′k(0) = 0



 =⇒ zk = c̃k cos

(
t
√
λk
)
, (7.6.3)

and for P =
[
x1 |x2 | · · · |xn

]
,

y = Pz = z1x1 + z2x2 + · · ·+ znxn =

n∑

j=1

(
c̃j cos

(
t
√
λk
))
xj . (7.6.4)

This means that every possible mode of vibration is a combination of modes
determined by the eigenvectors xj . To understand this more clearly, suppose
that the beads are initially positioned according to the components of xj —i.e.,
c = y(0) = xj . Then c̃ = PT c = PTxj = ej , so (7.6.3) and (7.6.4) reduce to

zk =

{
cos
(
t
√
λk
)

if k = j
0 if k �= j

=⇒ y =
(
cos
(
t
√
λk
))
xj . (7.6.5)

In other words, when y(0) = xj , the jth eigenpair (λj ,xj) completely deter-
mines the mode of vibration because the amplitudes are determined by xj , and
each bead vibrates with a common frequency f =

√
λj/2π. This type of motion

(7.6.5) is called a fundamental mode of vibration. In these terms, equation
(7.6.4) translates to say that every possible mode of vibration is a combination

of the fundamental modes. For example, when n = 3, the matrix in (7.6.2) is

A =
T

mL




2 −1 0
−1 2 −1
0 −1 2


 with





λ1 = (T/mL)(2)
λ2 = (T/mL)(2 +

√
2)

λ3 = (T/mL)(2−
√
2)



 ,

and a complete orthonormal set of eigenvectors is

x1 =
1√
2




1
0
−1


 , x2 =

1

2




1√
2
1


 , x3 =

1

2




1
−
√
2
1


 .

The three corresponding fundamental modes are shown in Figure 7.6.3.

Mode for (λ1,x1) Mode for (λ2,x2) Mode for (λ3,x3)
Figure 7.6.3
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Example 7.6.2

Discrete Laplacian. According to the laws of physics, the temperature at time
t at a point (x, y, z) in a solid body is a function u(x, y, z, t) satisfying the
diffusion equation

∂u

∂t
= K∇2u, where ∇2u =

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

is the Laplacian of u and K is a constant of thermal diffusivity. At steady
state the temperature at each point does not vary with time, so ∂u/∂t = 0 and
u = u(x, y, z) satisfy Laplace’s equation ∇2u = 0. Solutions of this equation
are often called harmonic functions. The nonhomogeneous equation ∇2u = f
(Poisson’s equation) is addressed in Exercise 7.6.9. To keep things simple, let’s
confine our attention to the following two-dimensional problem.

Problem: For a square plate as shown in Figure 7.6.4(a), explain how to nu-
merically determine the steady-state temperature at interior grid points when
the temperature around the boundary is prescribed to be u(x, y) = g(x, y) for
a given function g. In other words, explain how to extract a numerical solution
to ∇2u = 0 in the interior of the square when u(x, y) = g(x, y) on the square’s

boundary. This is called a Dirichlet problem.
76

Solution: Discretize the problem by overlaying the plate with a square mesh
containing n2 interior points at equally spaced intervals of length h. As il-
lustrated in Figure 7.6.4(b) for n = 4, label the grid points using a rowwise
ordering scheme—i.e., label them as you would label matrix entries.

∇2u = 0 in the interior

u(x, y) = g(x, y) on the boundary

u
(x
,y
)
=

g
(x
,y
)
on

th
e
b
ou
n
d
a
ry

u
(x
,y
)
=

g
(x
,y
)
on

th
e
b
ou
n
d
ary

u(x, y) = g(x, y) on the boundary 00 01 02 03 04 05

10 11 12 13 14 15

20 21 22 23 24 25

30 31 32 33 34 35

40 41 42 43 44 45

50 51 52 53 54 55
︸ ︷︷ ︸

︸
︷︷

︸

h

h

(a) (b)

Figure 7.6.4

76
Johann Peter Gustav Lejeune Dirichlet (1805–1859) held the chair at Göttingen previously
occupied by Gauss. Because of his work on the convergence of trigonometric series, Dirichlet
is generally considered to be the founder of the theory of Fourier series, but much of the
groundwork was laid by S. D. Poisson (p. 572) who was Dirichlet’s Ph.D. advisor.
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Approximate ∂2u/∂x2 and ∂2u/∂y2 at the interior grid points (xi, yj) by using
the second-order centered difference formula (1.4.3) developed on p. 19 to write

∂2u

∂x2

∣∣∣
(xi,yj)

=
u(xi − h, yj)− 2u(xi, yj) + u(xi + h, yj)

h2
+O(h2),

∂2u

∂y2

∣∣∣
(xi,yj)

=
u(xi, yj − h)− 2u(xi, yj) + u(xi, yj + h)

h2
+O(h2).

(7.6.6)

Adopt the notation uij = u(xi, yj), and add the expressions in (7.6.6) using
∇2u|(xi,yj) = 0 for interior points (xi, yj) to produce

4uij = (ui−1,j + ui+1,j + ui,j−1 + ui,j+1) +O(h4) for i, j = 1, 2, . . . , n.

In other words, the steady-state temperature at an interior grid point is approxi-
mately the average of the steady-state temperatures at the four neighboring grid
points as illustrated in Figure 7.6.5.

ij

i− 1, j

i+ 1, j

i, j + 1i, j − 1 uij =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1

4
+O(h4)

Figure 7.6.5

If the O(h4) terms are neglected, the resulting five-point difference equations,

4uij − (ui−1,j + ui+1,j + ui,j−1 + ui,j+1) = 0 for i, j = 1, 2, . . . , n,

constitute an n2 × n2 linear system Lu = g in which the unknowns are the
uij ’s, and the right-hand side contains boundary values. For example, a mesh
with nine interior points produces the 9× 9 system in Figure 7.6.6.

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44




4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4







u11

u12

u13

u21

u22

u23

u31

u32

u33




=




g01 + g10

g02

g03 + g14

g20

0
g24

g30 + g41

g42

g43 + g34




Figure 7.6.6
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The coefficient matrix of this system is the discrete Laplacian, and in general
it has the symmetric block-tridiagonal form

L=




T −I
−I T −I

. . .
. . .

. . .

−I T −I
−I T




n2×n2

with T=




4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4




n×n

.

In addition, L is positive definite. In fact, the discrete Laplacian is a primary
example of how positive definite matrices arise in practice. Note that L is the
two-dimensional version of the one-dimensional finite-difference matrix in Exam-
ple 1.4.1 (p. 19).

Problem: Show L is positive definite by explicitly exhibiting its eigenvalues.

Solution: Example 7.2.5 (p. 514) insures that the n eigenvalues of T are

λi = 4− 2 cos

(
iπ

n+ 1

)
, i = 1, 2, . . . , n. (7.6.7)

If U is an orthogonal matrix such that UTTU = D = diag (λ1, λ2, . . . , λn) ,
and if B is the n2 × n2 block-diagonal orthogonal matrix

B =




U 0 · · · 0
0 U · · · 0
...

...
. . .

...
0 0 · · · U


, then BTLB = L̃ =




D −I
−I D −I

. . .
. . .

. . .

−I D −I
−I D




.

Consider the permutation obtained by placing the numbers 1, 2, . . . , n2 rowwise
in a square matrix, and then reordering them by listing the entries columnwise.
For example, when n = 3 this permutation is generated as follows:

v = (1, 2, 3, 4, 5, 6, 7, 8, 9)→ A =



1 2 3
4 5 6
7 8 9


→ (1, 4, 7, 2, 5, 8, 3, 6, 9) = ṽ.

Equivalently, this can be described in terms of wrapping and unwrapping rows by

writing v
wrap
−−−→A −→ AT

unwrap
−−−−→ṽ. If P is the associated n2×n2 permutation

matrix, then

PT L̃P=




T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tn


 with Ti=




λi −1
−1 λi −1

. . .
. . .

. . .

−1 λi −1
−1 λi




n×n

.
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If you try it on the 9 × 9 case, you will see why it works. Now, Ti is another
tridiagonal Toeplitz matrix, so Example 7.2.5 (p. 514) again applies to yield
σ (Ti) = {λi − 2 cos (jπ/n+ 1) , j = 1, 2, . . . , n} . This together with (7.6.7) pro-
duces the n2 eigenvalues of L as

λij = 4− 2

[
cos

(
iπ

n+ 1

)
+ cos

(
jπ

n+ 1

)]
, i, j = 1, 2, . . . , n,

or, by using the identity 1− cos θ = 2 sin2(θ/2),

λij = 4

[
sin2

(
iπ

2(n+ 1)

)
+ sin2

(
jπ

2(n+ 1)

)]
, i, j = 1, 2, . . . , n. (7.6.8)

Since each λij is positive, L must be positive definite. As a corollary, L is
nonsingular, and hence Lu = g yields a unique solution for the steady-state
temperatures on the square plate (otherwise something would be amiss).

At first glance it’s tempting to think that statements about positive definite
matrices translate to positive semidefinite matrices simply by replacing the word
“positive” by “nonnegative,” but this is not always true. When A has zero
eigenvalues (i.e., when A is singular) there is no LU factorization, and, unlike the
positive definite case, having nonnegative leading principal minors doesn’t insure

that A is positive semidefinite—e.g., consider A =
(
0 0
0 −1

)
. The positive

definite properties that have semidefinite analogues are listed below.

Positive Semidefinite Matrices
For real-symmetric matrices such that rank (An×n) = r, the following
statements are equivalent, so any one of them can serve as the definition
of a positive semidefinite matrix.

• xTAx ≥ 0 for all x ∈ ℜn×1 (the most common definition). (7.6.9)

• All eigenvalues of A are nonnegative. (7.6.10)

• A = BTB for some B with rank (B) = r. (7.6.11)

• All principal minors of A are nonnegative. (7.6.12)

For hermitian matrices, replace (⋆)T by (⋆)∗ and ℜ by C.

Proof of (7.6.9) =⇒ (7.6.10). The hypothesis insures xTAx ≥ 0 for eigenvectors

of A. If (λ,x) is an eigenpair, then λ = xTAx/xTx = ‖Bx‖22 / ‖x‖
2
2 ≥ 0.

Proof of (7.6.10) =⇒ (7.6.11). Similar to the positive definite case, if each λi ≥ 0,
write A = PD1/2D1/2PT = BTB, where B = D1/2PT has rank r.
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Proof of (7.6.11) =⇒ (7.6.12). If Pk is a principal submatrix of A, then

(
Pk ⋆
⋆ ⋆

)
= QTAQ = QTBTBQ =

(
FT

⋆

)[
F | ⋆

]
=⇒ Pk = FTF

for a permutation matrix Q. Thus det (Pk) = det
(
FTF

)
≥ 0 (Exercise 6.1.10).

Proof of (7.6.12) =⇒ (7.6.9). If Ak is the leading k × k principal submatrix
of A, and if {µ1, µ2, . . . , µk} are the eigenvalues (including repetitions) of Ak,
then ǫI+Ak has eigenvalues {ǫ+ µ1, ǫ+ µ2, . . . , ǫ+ µk}, so, for every ǫ > 0,

det (ǫI+Ak) = (ǫ+ µ1)(ǫ+ µ2) · · · (ǫ+ µk) = ǫk + s1ǫ
k−1 + · · ·+ ǫsk−1 + sk > 0

because sj is the jth symmetric function of the µi ’s (p. 494), and, by (7.1.6),
sj is the sum of the j × j principal minors of Ak, which are principal minors
of A. In other words, each leading principal minor of ǫI + A is positive, so
ǫI+A is positive definite by the results on p. 559. Consequently, for each nonzero
x ∈ ℜn×1, we must have xT (ǫI +A)x > 0 for every ǫ > 0. Let ǫ → 0+ (i.e.,
through positive values) to conclude that xTAx ≥ 0 for each x ∈ ℜn×1.

Quadratic Forms
For a vector x ∈ ℜn×1 and a matrix A ∈ ℜn×n, the scalar function
defined by

f(x) = xTAx =

n∑

i=1

n∑

j=1

aijxixj (7.6.13)

is called a quadratic form. A quadratic form is said to be positive def-

inite whenever A is a positive definite matrix. In other words, (7.6.13)
is a positive definite form if and only if f(x) > 0 for all 0 �= x ∈ ℜn×1.

Because xTAx = xT
[
(A+AT )/2

]
x, and because (A+AT )/2 is symmet-

ric, the matrix of a quadratic form can always be forced to be symmetric. For
this reason it is assumed that the matrix of every quadratic form is symmetric.
When x ∈ Cn×1, A ∈ Cn×n, and A is hermitian, the expression xHAx is
known as a complex quadratic form.

Example 7.6.3

Diagonalization of a Quadratic Form. A quadratic form f(x) = xTDx
is said to be a diagonal form whenever Dn×n is a diagonal matrix, in which
case xTDx =

∑n
i=1 diix

2
i (there are no cross-product terms). Every quadratic

form xTAx can be diagonalized by making a change of variables (coordinates)
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y = QTx. This follows because A is symmetric, so there is an orthogonal ma-
trix Q such that QTAQ = D = diag (λ1, λ2, . . . , λn) , where λi ∈ σ (A) , and
setting y = QTx (or, equivalently, x = Qy) gives

xTAx = yTQTAQy = yTDy =

n∑

i=1

λiy
2
i . (7.6.14)

This shows that the nature of the quadratic form is determined by the eigenvalues
of A (which are necessarily real). The effect of diagonalizing a quadratic form in
this way is to rotate the standard coordinate system so that in the new coordinate
system the graph of xTAx = α is in “standard form.” If A is positive definite,
then all of its eigenvalues are positive (p. 559), so (7.6.14) makes it clear that the
graph of xTAx = α for a constant α > 0 is an ellipsoid centered at the origin.
Go back and look at Figure 7.2.1 (p. 505), and see Exercise 7.6.4 (p. 571).

Example 7.6.4

Congruence. It’s not necessary to solve an eigenvalue problem to diagonalize
a quadratic form because a congruence transformation CTAC in which C
is nonsingular (but not necessarily orthogonal) can be found that will do the
job. A particularly convenient congruence transformation is produced by the
LDU factorization for A, which is A = LDLT because A is symmetric—see
Exercise 3.10.9 (p. 157). This factorization is relatively cheap, and the diagonal
entries in D = diag (p1, p2, . . . , pn) are the pivots that emerge during Gaussian
elimination (p. 154). Setting y = LTx (or, equivalently, x = (LT )−1y) yields

xTAx = yTDy =

n∑

i=1

piy
2
i .

The inertia of a real-symmetric matrix A is defined to be the triple (ρ, ν, ζ)
in which ρ, ν, and ζ are the respective number of positive, negative, and
zero eigenvalues, counting algebraic multiplicities. In 1852 J. J. Sylvester (p. 80)
discovered that the inertia of A is invariant under congruence transformations.

Sylvester’s Law of Inertia
Let A ∼= B denote the fact that real-symmetric matrices A and B
are congruent (i.e.,CTAC = B for some nonsingular C). Sylvester’s
law of inertia states that:

A ∼= B if and only if A and B have the same inertia.
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Proof.
77

Observe that if An×n is real and symmetric with inertia (p, j, s), then

A ∼=



Ip×p

−Ij×j

0s×s


 = E, (7.6.15)

because if {λ1, . . . , λp,−λp+1, . . . ,−λp+j , 0, . . . , 0} are the eigenvalues of A
(counting multiplicities) with each λi > 0, there is an orthogonal matrix P
such that PTAP = diag (λ1, . . . , λp,−λp+1, . . . ,−λp+j , 0, . . . , 0) , so C = PD,

where D = diag
(
λ
−1/2
1 , . . . , λ

−1/2
p+j , 1, . . . , 1

)
, is nonsingular and CTAC = E.

Let B be a real-symmetric matrix with inertia (q, k, t) so that

B ∼=



Iq×q

−Ik×k

0t×t


 = F.

If B ∼= A, then F ∼= E (congruence is transitive), so rank (F) = rank (E), and
hence s = t. To show that p = q, assume to the contrary that p > q, and write
F = KTEK for some nonsingular K =

(
Xn×q |Yn×n−q

)
. If M = R (Y) ⊆ ℜn

and N = span {e1, . . . , ep} ⊆ ℜn, then using the formula (4.4.19) for the dimen-
sion of a sum (p. 205) yields

dim(M∩N ) = dimM+dimN −dim(M+N ) = (n−q)+p−dim(M+N ) > 0.

Consequently, there exists a nonzero vector x ∈M∩N . For such a vector,

x ∈M =⇒ x = Yy = K

(
0
y

)
=⇒ xTEx =

(
0T |yT

)
F

(
0
y

)
≤ 0,

and

x ∈ N =⇒ x = (x1, . . . , xp, 0, . . . , 0)
T =⇒ xTEx > 0,

which is impossible. Therefore, we can’t have p > q. A similar argument shows
that it’s also impossible to have p < q, so p = q. Thus it is proved that if
A ∼= B, then A and B have the same inertia. Conversely, if A and B have in-
ertia (p, j, s), then the argument that produced (7.6.15) yields A ∼= E ∼= B.

77
The fact that inertia is invariant under congruence is also a corollary of a deeper theo-
rem stating that the eigenvalues of A vary continuously with the entries. The argument
is as follows. Assume A is nonsingular (otherwise consider A + ǫI for small ǫ), and set
X(t) = tQ+ (1− t)QR for t ∈ [0, 1], where C = QR is the QR factorization. Both X(t)

and Y(t) = XT (t)AX(t) are nonsingular on [0, 1], so continuity of eigenvalues insures that

no eigenvalue Y(t) can cross the origin as t goes from 0 to 1. Hence Y(0) = CT AC has

the same number of positive (and negative) eigenvalues as Y(1) = QT AQ, which is similar

to A. Thus CT AC and A have the same inertia.
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Example 7.6.5

Taylor’s theorem in ℜn says that if f is a smooth real-valued function defined
on ℜn, and if x0 ∈ ℜn×1, then the value of f at x ∈ ℜn×1 is given by

f(x) = f(x0) + (x − x0)
T g(x0) + (x − x0)

T H(x0)(x − x0) +O(‖x − x0‖
3
),

where g(x0) = ∇f(x0) (the gradient of f evaluated at x0) has components

gi = ∂f/∂xi

∣

∣

∣

x0

, and where H(x0) is the Hessian matrix whose entries are

given by hij = ∂2f/∂xi∂xj

∣

∣

∣

x0

. Just as in the case of one variable, the vector

x0 is called a critical point when g(x0) = 0. If x0 is a critical point, then
Taylor’s theorem shows that (x − x0)

T H(x0)(x − x0) governs the behavior of
f at points x near to x0. This observation yields the following conclusions
regarding local maxima or minima.

• If x0 is a critical point such that H(x0) is positive definite, then f has a
local minimum at x0.

• If x0 is a critical point such that H(x0) is negative definite (i.e., zT Hz < 0
for all z �= 0 or, equivalently, −H is positive definite), then f has a local
maximum at x0.

Exercises for section 7.6

7.6.1. Which of the following matrices are positive definite?

A =





1 −1 −1
−1 5 1
−1 1 5



 . B =





20 6 8
6 3 0
8 0 8



 . C =





2 0 2
0 6 2
2 2 4



 .

7.6.2. Spring-Mass Vibrations. Two masses m1 and m2 are suspended
between three identical springs (with spring constant k) as shown in
Figure 7.6.7. Each mass is initially displaced from its equilibrium posi-
tion by a horizontal distance and released to vibrate freely (assume there
is no vertical displacement).

m1 m2

m1 m2

x1 x2

Figure 7.6.7
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(a) If xi(t) denotes the horizontal displacement of mi from equilibrium at
time t, show that Mx′′ = Kx, where

M =

(

m1 0
0 m2

)

, x =

(

x1(t)
x2(t)

)

, and K = k

(

2 −1
−1 2

)

.

(Consider a force directed to the left to be positive.) Notice that the
mass-stiffness equation Mx′′ = Kx is the matrix version of Hooke’s
law F = kx, and K is positive definite.

(b) Look for a solution of the form x = eiθtv for a constant vector v, and
show that this reduces the problem to solving an algebraic equation of
the form Kv = λMv (for λ = −θ2). This is called a generalized

eigenvalue problem because when M = I we are back to the ordi-
nary eigenvalue problem. The generalized eigenvalues λ1 and λ2 are
the roots of the equation det (K − λM) = 0—find them when k = 1,
m1 = 1, and m2 = 2, and describe the two modes of vibration.

(c) Take m1 = m2 = m, and apply the technique used in the vibrating
beads problem in Example 7.6.1 (p. 559) to determine the fundamental
modes. Compare the results with those of part (b).

7.6.3. Three masses m1, m2, and m3 are suspended on three identical springs
(with spring constant k) as shown below. Each mass is initially displaced
from its equilibrium position by a vertical distance and then released to
vibrate freely.

(a) If yi(t) denotes the displacement of mi from equilibrium
at time t, show that the mass-stiffness equation is My′′ = Ky,
where

M=





m1 0 0
0 m2 0
0 0 m3



, y=





y1(t)
y2(t)
y3(t)



, K=k





2 −1 0
−1 2 −1
0 −1 1





(k33 = 1 is not a mistake!).

(b) Show that K is positive definite.

(c) Find the fundamental modes when m1 = m2 = m3 = m.

7.6.4. By diagonalizing the quadratic form 13x2+10xy+13y2, show that the
rotated graph of 13x2+10xy+13y2 = 72 is an ellipse in standard form
as shown in Figure 7.2.1 on p. 505.

7.6.5. Suppose that A is a real-symmetric matrix. Explain why the signs of
the pivots in the LDU factorization for A reveal the inertia of A.



572 Chapter 7 Eigenvalues and Eigenvectors

7.6.6. Consider the quadratic form

f(x) =
1

9
(−2x2

1
+ 7x2

2
+ 4x2

3
+ 4x1x2 + 16x1x3 + 20x2x3).

(a) Find a symmetric matrix A so that f(x) = xT Ax.
(b) Diagonalize the quadratic form using the LDLT factorization

as described in Example 7.6.4, and determine the inertia of A.
(c) Is this a positive definite form?
(d) Verify the inertia obtained above is correct by computing the

eigenvalues of A.
(e) Verify Sylvester’s law of inertia by making up a congruence

transformation C and then computing the inertia of CT AC.

7.6.7. Polar Factorization. Explain why each nonsingular A ∈ Cn×n can be
uniquely factored as A = RU, where R is hermitian positive definite
and U is unitary. This is the matrix analog of the polar form of a
complex number z = reiθ, r > 0, because 1× 1 hermitian positive
definite matrices are positive real numbers, and 1× 1 unitary matrices
are points on the unit circle. Hint: First explain why R = (AA∗)1/2.

7.6.8. Explain why trying to produce better approximations to the solution
of the Dirichlet problem in Example 7.6.2 by using finer meshes with
more grid points results in an increasingly ill-conditioned linear system
Lu = g.

7.6.9. For a given function f the equation ∇2u = f is called Poisson’s
78

equation. Consider Poisson’s equation on a square in two dimensions
with Dirichlet boundary conditions. That is,

∂2u

∂x2
+

∂2u

∂y2
= f(x, y) with u(x, y) = g(x, y) on the boundary.

78

Siméon Denis Poisson (1781–1840) was a prolific French scientist who was originally encouraged
to study medicine but was seduced by mathematics. While he was still a teenager, his work
attracted the attention of the reigning scientific elite of France such as Legendre, Laplace, and
Lagrange. The latter two were originally his teachers (Lagrange was his thesis director) at the

École Polytechnique, but they eventually became his friends and collaborators. It is estimated
that Poisson published about 400 scientific articles, and his 1811 book Traité de mécanique was
the standard reference for mechanics for many years. Poisson began his career as an astronomer,
but he is primarily remembered for his impact on applied areas such as mechanics, probability,
electricity and magnetism, and Fourier series. This seems ironic because he held the chair of
“pure mathematics” in the Faculté des Sciences. The next time you find yourself on the streets
of Paris, take a stroll on the Rue Denis Poisson, or you can check out Poisson’s plaque, along
with those of Lagrange, Laplace, and Legendre, on the first stage of the Eiffel Tower.
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Discretize the problem by overlaying the square with a regular mesh con-
taining n2 interior points at equally spaced intervals of length h as ex-
plained in Example 7.6.2 (p. 563). Let fij = f(xi, yj), and define f to be
the vector f = (f11, f12, . . . , f1n|f21, f22 . . . , f2n| · · · |fn1, fn2, . . . , fnn)

T .
Show that the discretization of Poisson’s equation produces a system
of linear equations of the form Lu = g − h2f , where L is the discrete
Laplacian and where u and g are as described in Example 7.6.2.

7.6.10. As defined in Exercise 5.8.15 (p. 380) and discussed in Exercise 7.8.11
(p. 597) the Kronecker product (sometimes called tensor product , or
direct product) of matrices Am×n and Bp×q is the mp× nq matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB


 .

Verify that if In is the n× n identity matrix, and if

An =




2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2




n×n

is the nth-order finite difference matrix of Example 1.4.1 (p. 19), then
the discrete Laplacian is given by

Ln2×n2 = (In ⊗An) + (An ⊗ In).

Thus we have an elegant matrix connection between the finite difference
approximations of the one-dimensional and two-dimensional Laplacians.
This formula leads to a simple alternate derivation of (7.6.8)—see Exer-
cise 7.8.12 (p. 598). As you might guess, the discrete three-dimensional
Laplacian is

Ln3×n3 = (In ⊗ In ⊗An) + (In ⊗An ⊗ In) + (An ⊗ In ⊗ In).
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7.7 NILPOTENT MATRICES AND JORDAN STRUCTURE

While it’s not always possible to diagonalize a matrix A ∈ Cm×m with a similar-
ity transformation, Schur’s theorem (p. 508) guarantees that every A ∈ Cm×m

is unitarily similar to an upper-triangular matrix—say U∗AU = T. But other
than the fact that the diagonal entries of T are the eigenvalues of A, there is
no pattern to the nonzero part of T. So to what extent can this be remedied by
giving up the unitary nature of U? In other words, is there a nonunitary P for
which P−1AP has a simpler and more predictable pattern than that of T? We
have already made the first step in answering this question. The core-nilpotent
decomposition (p. 397) says that for every singular matrix A of index k and
rank r, there is a nonsingular matrix Q such that

Q−1AQ =

(
Cr×r 0
0 L

)
, where rank (C) = r and L is nilpotent of index k.

Consequently, any further simplification by means of similarity transformations
can revolve around C and L. Let’s begin by examining the degree to which
nilpotent matrices can be reduced by similarity transformations.

In what follows, let Ln×n be a nilpotent matrix of index k so that Lk = 0
but Lk−1 �= 0. The first question is, “Can L be diagonalized by a similarity
transformation?” To answer this, notice that λ = 0 is the only eigenvalue of L
because

Lx = λx =⇒ Lkx = λkx =⇒ 0 = λkx =⇒ λ = 0 (since x �= 0 ).

So if L is to be diagonalized by a similarity transformation, it must be the case
that P−1LP = D = 0 (diagonal entries of D must be eigenvalues of L ), and
this forces L = 0. In other words, the only nilpotent matrix that is similar to a
diagonal matrix is the zero matrix.

Assume L �= 0 from now on so that L is not diagonalizable. Since L
can always be triangularized (Schur’s theorem again), our problem boils down
to finding a nonsingular P such that P−1LP is an upper-triangular matrix
possessing a simple and predictable form. This turns out to be a fundamental
problem, and the rest of this section is devoted to its solution. But before diving
in, let’s set the stage by thinking about some possibilities.

If P−1LP = T is upper triangular, then the diagonal entries of T must
be the eigenvalues of L, so T must have the form

T =




0 ⋆ · · · ⋆
. . .

. . .
...

. . . ⋆
0


 .
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One way to simplify the form of T is to allow nonzero entries only on the
superdiagonal (the diagonal immediately above the main diagonal) of T, so we
might try to construct a nonsingular P such that T has the form

T =




0 ⋆
. . .

. . .

. . . ⋆

0


 .

To gain some insight on how this might be accomplished, let L be a 3× 3
nilpotent matrix for which L3 = 0 and L2 �= 0, and search for a P such that

P−1LP =



0 1 0
0 0 1
0 0 0


⇐⇒ L[P∗1P∗2P∗3 ] = [P∗1P∗2P∗3 ]



0 1 0
0 0 1
0 0 0




⇐⇒ LP∗1 = 0, LP∗2 = P∗1, LP∗3 = P∗2.

Since L3 = 0, we can set P∗1 = L2x for any x3×1 such that L2x �= 0. This
in turn allows us to set P∗2 = Lx and P∗3 = x. Because J = {L2x, Lx, x}
is a linearly independent set (Exercise 5.10.8), P = [L2x |Lx |x ] will do the
job. J is called a Jordan chain, and it is characterized by the fact that its
first vector is a somewhat special eigenvector for L while the other vectors are
built (or “chained”) on top of this eigenvector to form a special basis for C3.
There are a few more wrinkles in the development of a general theory for n× n
nilpotent matrices, but the features illustrated here illuminate the path.

For a general nilpotent matrix Ln×n �= 0 of index k, we know that λ = 0 is
the only eigenvalue, so the set of eigenvectors of L is N (L) (excluding the zero
vector of course). Realizing that L is not diagonalizable is equivalent to realizing
that L does not possess a complete linearly independent set of eigenvectors or,
equivalently, dimN (L) < n. As in the 3× 3 example above, the strategy for
building a similarity transformation P that reduces L to a simple triangular
form is as follows.

(1) Construct a somewhat special basis B for N (L).

(2) Extend B to a basis for Cn by building Jordan chains on top of the
eigenvectors in B.

To accomplish (1), consider the subspaces defined by

Mi = R
(
Li
)
∩N (L) for i = 0, 1, . . . , k, (7.7.1)

and notice (Exercise 7.7.4) that these subspaces are nested as

0 =Mk ⊆Mk−1 ⊆Mk−2 ⊆ · · · ⊆ M1 ⊆M0 = N (L).
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Use these nested spaces to construct a basis for N (L) =M0 by starting with
any basis Sk−1 for Mk−1 and by sequentially extending Sk−1 with addi-
tional sets Sk−2, Sk−3, . . . ,S0 such that Sk−1 ∪ Sk−2 is a basis for Mk−2,
Sk−1 ∪ Sk−2 ∪ Sk−3 is a basis for Mk−3, etc. In general, Si is a set of vectors
that extends Sk−1 ∪ Sk−2 ∪ · · · ∪ Si−1 to a basis for Mi. Figure 7.7.1 is a
heuristic diagram depicting an example of k = 5 nested subspaces Mi along
with some typical extension sets Si that combine to form a basis for N (L).

Figure 7.7.1

Now extend the basis B = Sk−1 ∪ Sk−2 ∪ · · · ∪ S0 = {b1,b2, . . . ,bt} for
N (L) to a basis for Cn by building Jordan chains on top of each b ∈ B. If
b ∈ Si, then there exists a vector x such that Lix = b because each b ∈ Si
belongs to Mi = R

(
Li
)
∩N (L) ⊆ R

(
Li
)
. A Jordan chain is built on top of

each b ∈ Si by solving the system Lix = b for x and by setting

Jb = {Lix, Li−1x, . . . ,Lx, x}. (7.7.2)

Notice that chains built on top of vectors from Si each have length i+ 1. The
heuristic diagram in Figure 7.7.2 depicts Jordan chains built on top of the basis
vectors illustrated in Figure 7.7.1—the chain that is labeled is built on top of a
vector b ∈ S3.

Figure 7.7.2
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The collection of vectors in all of these Jordan chains is a basis for Cn.
To demonstrate this, first it must be argued that the total number of vectors
in all Jordan chains is n, and then it must be proven that this collection is a
linearly independent set. To count the number of vectors in all Jordan chains
Jb, first recall from (4.5.1) that the rank of a product is given by the formula
rank (AB) = rank (B)− dimN (A) ∩R (B), and apply this to conclude that
dimMi = dimR

(
Li
)
∩N (L) = rank

(
Li
)
− rank

(
LLi

)
. In other words, if we

set di = dimMi and ri = rank
(
Li
)
, then

di = dimMi = rank
(
Li
)
− rank

(
Li+1

)
= ri − ri+1, (7.7.3)

so the number of vectors in Si is

νi = di − di+1 = ri − 2ri+1 + ri+2. (7.7.4)

Since every chain emanating from a vector in Si contains i + 1 vectors, and
since dk = 0 = rk, the total number of vectors in all Jordan chains is

total =

k−1∑

i=0

(i+ 1)νi =
k−1∑

i=0

(i+ 1)(di − di+1)

= d0 − d1 + 2(d1 − d2) + 3(d2 − d3) + · · ·+ k(dk−1 − dk)

= d0 + d1 + · · ·+ dk−1

= (r0 − r1) + (r1 − r2) + (r2 − r3) + · · ·+ (rk−1 − rk)

= r0 = n.

To prove that the set of all vectors from all Jordan chains is linearly independent,
place these vectors as columns in a matrix Qn×n and show that N (Q) = 0.
The trick in doing so is to arrange the vectors from the Jb ’s in just the right
order. Begin by placing the vectors at the top level in chains emanating from Si
as columns in a matrix Xi as depicted in the heuristic diagram in Figure 7.7.3.

Figure 7.7.3
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The matrix LXi contains all vectors at the second highest level of those chains
emanating from Si, while L2Xi contains all vectors at the third highest level
of those chains emanating from Si, and so on. In general, LjXi contains all
vectors at the (j+1)st highest level of those chains emanating from Si. Proceed
by filling in Q = [Q0 |Q1 | · · · |Qk−1 ] from the bottom up by letting Qj be
the matrix whose columns are all vectors at the jth level from the bottom in all
chains. For the example illustrated in Figures 7.7.1–7.7.3 with k = 5,

Q0 = [X0 |LX1 |L2X2 |L3X3 |L4X4 ] = vectors at level 0 = basis B for N (L),

Q1 = [X1 |LX2 |L2X3 |L3X4 ] = vectors at level 1 (from the bottom),

Q2 = [X2 |LX3 |L2X4 ] = vectors at level 2 (from the bottom),

Q3 = [X3 |LX4 ] = vectors at level 3 (from the bottom),

Q4 = [X4 ] = vectors at level 4 (from the bottom).

In general, Qj = [Xj |LXj+1 |L2Xj+2 | · · · |Lk−1−jXk−1 ]. Since the columns
of LjXj are all on the bottom level (level 0), they are part of the basis B for
N (L). This means that the columns of LjQj are also part of the basis B for
N (L), so they are linearly independent, and thus N

(
LjQj

)
= 0. Furthermore,

since the columns of LjQj are in N (L), we have L
(
LjQj

)
= 0, and hence

Lj+hQj = 0 for all h ≥ 1. Now use these observations to prove N (Q) = 0. If
Qz = 0, then multiplication by Lk−1 yields

0 = Lk−1Qz = [Lk−1Q0 |Lk−1Q1 | · · · |Lk−1Qk−1 ] z

= [0 |0 | · · · |Lk−1Qk−1 ]




z0

z2
...

zk−1


 =⇒ zk−1 ∈ N

(
Lk−1Qk−1

)

=⇒ zk−1 = 0.

This conclusion with the same argument applied to 0 = Lk−2Qz produces
zk−2 = 0. Similar repetitions show that zi = 0 for each i, and thus N (Q) = 0.

It has now been proven that if B = Sk−1∪Sk−2∪· · ·∪S0 = {b1,b2, . . . ,bt}
is the basis for N (L) derived from the nested subspaces Mi, then the set of
all Jordan chains J = Jb1

∪ Jb2
∪ · · · ∪ Jbt

is a basis for Cn. If the vectors
from J are placed as columns (in the order in which they appear in J ) in a
matrix Pn×n = [J1 |J2 | · · · |Jt ], then P is nonsingular, and if bj ∈ Si, then
Jj = [Lix |Li−1x | · · · |Lx |x ] for some x such that Lix = bj so that

LJj = [0 |Lix | · · · |Lx ] = [Lix | · · · |Lx |x ]




0 1
. . .

. . .

. . . 1

0


 = JjNj ,
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where Nj is an (i+ 1)× (i+ 1) matrix whose entries are equal to 1 along the
superdiagonal and zero elsewhere. Therefore,

LP = [LJ1 |LJ2 | · · · |LJt ] = [J1 |J2 | · · · |Jt ]




N1 0 · · · 0
0 N2 · · · 0
...

. . .
...

0 0 · · · Nt




or, equivalently,

P−1LP = N =




N1 0 · · · 0
0 N2· · · 0
...

. . .
...

0 0 · · · Nt


 , where Nj =




0 1
. . .

. . .

. . . 1

0


 . (7.7.5)

Each Nj is a nilpotent matrix whose index is given by its size. The Nj ’s are
called nilpotent Jordan blocks, and the block-diagonal matrix N is called the
Jordan form for L. Below is a summary.

Jordan Form for a Nilpotent Matrix
Every nilpotent matrix Ln×n of index k is similar to a block-diagonal
matrix

P−1LP = N =




N1 0 · · · 0
0 N2· · · 0
...

. . .
...

0 0 · · · Nt


 (7.7.6)

in which each Nj is a nilpotent matrix having ones on the superdiagonal
and zeros elsewhere—see (7.7.5).

• The number of blocks in N is given by t = dimN (L).

• The size of the largest block in N is k × k.

• The number of i× i blocks in N is νi = ri−1 − 2ri + ri+1, where
ri = rank

(
Li
)
—this follows from (7.7.4).

• If B = Sk−1∪Sk−2∪ · · ·∪S0 = {b1,b2, . . . ,bt} is a basis for N (L)
derived from the nested subspaces Mi = R

(
Li
)
∩N (L), then

⊲ the set of vectors J = Jb1
∪ Jb2

∪ · · · ∪ Jbt
from all Jordan

chains is a basis for Cn;
⊲ Pn×n = [J1 |J2 | · · · |Jt ] is the nonsingular matrix containing

these Jordan chains in the order in which they appear in J .
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The following theorem demonstrates that the Jordan structure (the num-
ber and the size of the blocks in N ) is uniquely determined by L, but P is
not. In other words, the Jordan form is unique up to the arrangement of the
individual Jordan blocks.

Uniqueness of the Jordan Structure
The structure of the Jordan form for a nilpotent matrix Ln×n of index
k is uniquely determined by L in the sense that whenever L is similar
to a block-diagonal matrix B = diag (B1, B2, . . . ,Bt) in which each
Bi has the form

Bi =




0 ǫi 0 · · · 0
0 0 ǫi 0
...

. . .
. . .

...
0 0 · · · 0 ǫi
0 0 · · · 0 0




ni×ni

for ǫi �= 0,

then it must be the case that t = dimN (L), and the number of
blocks having size i× i must be given by ri−1 − 2ri + ri+1, where
ri = rank

(
Li
)
.

Proof. Suppose that L is similar to both B and N, where B is as described
above and N is as described in (7.7.6). This implies that B and N are similar,
and hence rank

(
Bi
)
= rank

(
Li
)
= ri for every nonnegative integer i. In

particular, index (B) = index (L). Each time a block Bi is powered, the line of
ǫi ’s moves to the next higher diagonal level so that

rank (Bp
i ) =

{
ni − p if p < ni,
0 if p ≥ ni.

Since rp = rank (Bp) =
∑t

i=1 rank (B
p
i ), it follows that if ωi is the number of

i× i blocks in B, then

rk−1 = ωk,
rk−2 = ωk−1 + 2ωk,
rk−3 = ωk−2 + 2ωk−1 + 3ωk,

...

and, in general, ri = ωi+1 + 2ωi+2 + · · · + (k − i)ωk. It’s now straightforward
to verify that ri−1 − 2ri + ri+1 = ωi. Finally, using this equation together with
(7.7.4) guarantees that the number of blocks in B must be

t =

k∑

i=1

ωi =

k∑

i=1

(ri−1 − 2ri + ri+1) =

k∑

i=1

νi = dimN (L).
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The manner in which we developed the Jordan theory spawned 1’s on the su-
perdiagonals of the Jordan blocks Ni in (7.7.5). But it was not necessary to
do so—it was simply a matter of convenience. In fact, any nonzero value can be
forced onto the superdiagonal of any Ni —see Exercise 7.7.9. In other words,
the fact that 1’s appear on the superdiagonals of the Ni ’s is artificial and is not
important to the structure of the Jordan form for L. What’s important, and
what constitutes the “Jordan structure,” is the number and sizes of the Jordan
blocks (or chains) and not the values appearing on the superdiagonals of these
blocks.

Example 7.7.1

Problem: Determine the Jordan forms for 3× 3 nilpotent matrices L1, L2,
and L3 that have respective indices k = 1, 2, 3.

Solution: The size of the largest block must be k × k, so

N1 =



0 0 0
0 0 0
0 0 0


 , N2 =



0 1 0
0 0 0
0 0 0


 , N3 =



0 1 0
0 0 1
0 0 0


 .

Example 7.7.2

For a nilpotent matrix L, the theoretical development relies on a complicated
basis for N (L) to derive the structure of the Jordan form N as well as the
Jordan chains that constitute a nonsingular matrix P such that P−1LP = N.
But, after the dust settled, we saw that a basis for N (L) is not needed to
construct N because N is completely determined simply by ranks of powers of
L. A basis for N (L) is only required to construct the Jordan chains in P.

Question: For the purpose of constructing Jordan chains in P, can we use an
arbitrary basis for N (L) instead of the complicated basis built from the Mi ’s?

Answer: No! Consider the nilpotent matrix

L =




2 0 1
−4 0 −2
−4 0 −2


 and its Jordan form N =



0 1 0
0 0 0

0 0 0


 .

If P−1LP = N, where P = [x1 |x2 |x3 ], then LP = PN implies that
Lx1 = 0, Lx2 = x1, and Lx3 = 0. In other words, B = {x1,x3} must
be a basis for N (L), and Jx1

= {x1,x2} must be a Jordan chain built on top
of x1. If we try to construct such vectors by starting with the naive basis

x1 =




1
0
−2


 and x3 =



0
1
0


 (7.7.7)
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for N (L) obtained by solving Lx = 0 with straightforward Gaussian elimi-
nation, we immediately hit a brick wall because x1 �∈ R (L) means Lx2 = x1

is an inconsistent system, so x2 cannot be determined. Similarly, x3 �∈ R (L)
insures that the same difficulty occurs if x3 is used in place of x1. In other
words, even though the vectors in (7.7.7) constitute an otherwise perfectly good
basis for N (L), they can’t be used to build P.

Example 7.7.3

Problem: Let Ln×n be a nilpotent matrix of index k. Provide an algorithm
for constructing the Jordan chains that generate a nonsingular matrix P such
that P−1LP = N is in Jordan form.

Solution:

1. Start with the fact that Mk−1 = R
(
Lk−1

)
(Exercise 7.7.5), and deter-

mine a basis {y1,y2, . . . ,yq} for R
(
Lk−1

)
.

2. Extend {y1,y2, . . . ,yq} to a basis for Mk−2 = R
(
Lk−2

)
∩ N (L) as

follows.

⊲ Find a basis {v1,v2, . . . ,vs} for N (LB), where B is a matrix con-
taining a basis for R

(
Lk−2

)
—e.g., the basic columns of Lk−2. The

set {Bv1,Bv2, . . . ,Bvs} is a basis for Mk−2 (see p. 211).

⊲ Find the basic columns in [y1 |y2 | · · · |yq |Bv1 |Bv2 | · · · |Bvs ]. Say
they are {y1, . . . ,yq,Bvβ1 , . . . ,Bvβj

} (all of the yj ’s are basic be-
cause they are a leading linearly independent subset). This is a basis
for Mk−2 that contains a basis for Mk−1. In other words,

Sk−1 = {y1,y2, . . . ,yq} and Sk−2 = {Bvβ1 ,Bvβ2 , . . . ,Bvβj
}.

3. Repeat the above procedure k − 1 times to construct a basis for N (L)
that is of the form B = Sk−1 ∪ Sk−2 ∪ · · · ∪ S0 = {b1,b2, . . . ,bt}, where
Sk−1 ∪ Sk−2 ∪ · · · ∪ Si is a basis for Mi for each i = k − 1, k − 2, . . . , 0.

4. Build a Jordan chain on top of each bj ∈ B. If bj ∈ Si, then we solve
Lixj = bj and set Jj = [Lixj |Li−1xj | · · · |Lxj |xj ]. The desired simi-
larity transformation is Pn×n = [J1 |J2 | · · · |Jt ].

Example 7.7.4

Problem: Find P and N such that P−1LP = N is in Jordan form, where

L =




1 1 −2 0 1 −1
3 1 5 1 −1 3
−2 −1 0 0 −1 0
2 1 0 0 1 0
−5 −3 −1 −1 −1 −1
−3 −2 −1 −1 0 −1




.
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Solution: First determine the Jordan form for L. Computing ri = rank
(
Li
)

reveals that r1 = 3, r2 = 1, and r3 = 0, so the index of L is k = 3, and

the number of 3× 3 blocks = r2 − 2r3 + r4 = 1,
the number of 2× 2 blocks = r1 − 2r2 + r3 = 1,
the number of 1× 1 blocks = r0 − 2r1 + r2 = 1.

Consequently, the Jordan form of L is

N =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 0

0 0 0 0 0 0




.

Notice that three Jordan blocks were found, and this agrees with the fact that
dimN (L) = 6 − rank (L) = 3. Determine P by following the procedure de-
scribed in Example 7.7.3.

1. Since rank
(
L2
)
= 1, any nonzero column from L2 will be a basis for

M2 = R
(
L2
)
, so set y1 = [L2]∗1 = (6,−6, 0, 0,−6,−6)T .

2. To extend y1 to a basis for M1 = R (L) ∩N (L), use

B = [L∗1 |L∗2 |L∗3 ] =




1 1 −2
3 1 5
−2 −1 0
2 1 0
−5 −3 −1
−3 −2 −1




=⇒ LB =




6 3 3
−6 −3 −3
0 0 0
0 0 0
−6 −3 −3
−6 −3 −3




,

and determine a basis for N (LB) to be

{
v1 =

(
−1
2
0

)
, v2 =

(
−1
0
2

)}
.

Reducing [y1 |Bv1 |Bv2 ] to echelon form shows that its basic columns
are in the first and third positions, so {y1,Bv2} is a basis for M1 with

S2 =








6
−6
0
0
−6
−6




= b1





and S1 =








−5
7
2
−2
3
1




= b2





.
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3. Now extend S2 ∪ S1 = {b1, b2} to a basis for M0 = N (L). This time,
B = I, and a basis for N (LB) = N (L) can be computed to be

v1 =




2
−4
−1
3
0
0




, v2 =




−4
5
2
0
3
0




, and v3 =




1
−2
−2
0
0
3




,

and {Bv1,Bv2,Bv3} = {v1,v2,v3}. Reducing [b1 |b2 |v1 |v2 |v3 ] to
echelon form reveals that its basic columns are in positions one, two, and
three, so v1 is the needed extension vector. Therefore, the complete nested
basis for N (L) is

b1 =




6
−6
0
0
−6
−6



∈ S2, b2 =




−5
7
2
−2
3
1



∈ S1, and b3 =




2
−4
−1
3
0
0



∈ S0.

4. Complete the process by building a Jordan chain on top of each bj ∈ Si
by solving Lixj = bj and by setting Jj = [Lixj | · · · |Lxj |xj ]. Since
x1 = e1 solves L2x1 = b1, we have J1 = [L2e1 |Le1 | e1 ]. Solving
Lx2 = b2 yields x2 = (−1, 0, 2, 0, 0, 0)T , so J2 = [Lx2 |x2 ]. Finally,
J3 = [b3 ]. Putting these chains together produces

P = [J1 |J2 |J3 ] =




6 1 1 −5 −1 2
−6 3 0 7 0 −4
0 −2 0 2 2 −1
0 2 0 −2 0 3
−6 −5 0 3 0 0
−6 −3 0 1 0 0




.

It can be verified by direct multiplication that P−1LP = N.

It’s worthwhile to pay attention to how the results in this section translate into
the language of direct sum decompositions of invariant subspaces as discussed
in §4.9 (p. 259) and §5.9 (p. 383). For a linear nilpotent operator L of index
k defined on a finite-dimensional vector space V, statement (7.7.6) on p. 579
means that V can be decomposed as a direct sum V = V1⊕V2⊕· · ·⊕Vt, where
Vj = span(Jbj

) is the space spanned by a Jordan chain emanating from the
basis vector bj ∈ N (L) and where t = dimN (L). Furthermore, each Vj is an
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invariant subspace for L, and the matrix representation of L with respect to
the basis J = Jb1 ∪ Jb2 ∪ · · · ∪ Jbt

is

[L]J =




N1 0 · · · 0
0 N2 · · · 0
...

...
. . .

...
0 0 · · · Nt


 in which Nj =

[
L/Vj

]

Jbj

. (7.7.8)

Exercises for section 7.7

7.7.1. Can the index of an n× n nilpotent matrix ever exceed n?

7.7.2. Determine all possible Jordan forms N for a 4× 4 nilpotent matrix.

7.7.3. Explain why the number of blocks of size i× i or larger in the Jordan
form for a nilpotent matrix is given by rank

(
Li−1

)
− rank

(
Li
)
.

7.7.4. For a nilpotent matrix L of index k, let Mi = R
(
Li
)
∩N (L). Prove

that Mi ⊆Mi−1 for each i = 0, 1, . . . , k.

7.7.5. Prove that R
(
Lk−1

)
∩N (L) = R

(
Lk−1

)
for all nilpotent matrices L

of index k > 1. In other words, prove Mk−1 = R
(
Lk−1

)
.

7.7.6. Let L be a nilpotent matrix of index k > 1. Prove that if the columns
of B are a basis for R

(
Li
)
for i ≤ k − 1, and if {v1,v2, . . . ,vs} is a

basis for N (LB), then {Bv1,Bv2, . . . ,Bvs} is a basis for Mi.

7.7.7. Find P and N such that P−1LP = N is in Jordan form, where

L =




3 3 2 1
−2 −1 −1 −1
1 −1 0 1
−5 −4 −3 −2


 .

7.7.8. Determine the Jordan form for the following 8× 8 nilpotent matrix.

L =




41 30 15 7 4 6 1 3
−54 −39 −19 −9 −6 −8 −2 −4

9 6 2 1 2 1 0 1
−6 −5 −3 −2 1 −1 0 0
−32 −24 −13 −6 −2 −5 −1 −2
−10 −7 −2 0 −3 0 3 −2
−4 −3 −2 −1 0 −1 −1 0
17 12 6 3 2 3 2 1




.
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7.7.9. Prove that if N is the Jordan form for a nilpotent matrix L as described
in (7.7.5) and (7.7.6) on p. 579, then for any set of nonzero scalars
{ǫ1, ǫ2, . . . , ǫt} , the matrix L is similar to a matrix Ñ of the form

Ñ =




ǫ1N1 0 · · · 0
0 ǫ2N2· · · 0
...

. . .
...

0 0 · · · ǫtNt


 .

In other words, the 1’s on the superdiagonal of the Ni ’s in (7.7.5) are
artificial because any nonzero value can be forced onto the superdiagonal
of any Ni. What’s important in the “Jordan structure” of L is the
number and sizes of the nilpotent Jordan blocks (or chains) and not the
values appearing on the superdiagonals of these blocks.
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7.8 JORDAN FORM

The goal of this section is to do for general matrices A ∈ Cn×n what was done for
nilpotent matrices in §7.7—reduce A by means of a similarity transformation
to a block-diagonal matrix in which each block has a simple triangular form.
The two major components for doing this are now in place—they are the core-
nilpotent decomposition (p. 397) and the Jordan form for nilpotent matrices. All
that remains is to connect these two ideas. To do so, it is convenient to adopt
the following terminology.

Index of an Eigenvalue
The index of an eigenvalue λ for a matrix A ∈ Cn×n is defined to
be the index of the matrix (A− λI) . In other words, from the charac-
terizations of index given on p. 395, index (λ) is the smallest positive
integer k such that any one of the following statements is true.

• rank
(
(A− λI)k

)
= rank

(
(A− λI)k+1

)
.

• R
(
(A− λI)k

)
= R

(
(A− λI)k+1

)
.

• N
(
(A− λI)k

)
= N

(
(A− λI)k+1

)
.

• R
(
(A− λI)k

)
∩N

(
(A− λI)k

)
= 0.

• Cn = R
(
(A− λI)k

)
⊕N

(
(A− λI)k

)
.

It is understood that index (µ) = 0 if and only if µ �∈ σ (A) .

The Jordan form for A ∈ Cn×n is derived by digesting the distinct eigen-
values in σ (A) = {λ1, λ2, . . . , λs} one at a time with a core-nilpotent decom-
position as follows. If index (λ1) = k1, then there is a nonsingular matrix X1

such that

X−1
1 (A− λ1I)X1 =

(
L1 0
0 C1

)
, (7.8.1)

where L1 is nilpotent of index k1 and C1 is nonsingular (it doesn’t matter
whether C1 or L1 is listed first, so, for the sake of convenience, the nilpotent
block is listed first). We know from the results on nilpotent matrices (p. 579)
that there is a nonsingular matrix Y1 such that

Y−1
1 L1Y1 = N(λ1) =




N1(λ1) 0 · · · 0
0 N2(λ1) · · · 0
...

...
. . .

...
0 0 · · · Nt1(λ1)




is a block-diagonal matrix that is characterized by the following features.
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⊲ Every block in N(λ1) has the form N⋆(λ1) =




0 1
. . .

. . .

. . . 1
0


.

⊲ There are t1 = dimN (L1) = dimN (A− λ1I) such blocks in N(λ1).

⊲ The number of i× i blocks of the form N⋆(λ1) contained in N(λ1) is
νi(λ1) = rank

(
Li−1

1

)
− 2 rank

(
Li

1

)
+ rank

(
Li+1

1

)
. But C1 in (7.8.1) is

nonsingular, so rank (Lp
1) = rank ((A− λ1I)

p
)− rank (C1), and thus the

number of i× i blocks N⋆(λ1) contained in N(λ1) can be expressed as

νi(λ1) = ri−1(λ1)− 2ri(λ1)+ ri+1(λ1), where ri(λ1) = rank
(
(A−λ1I)

i
)
.

Now, Q1=X1

(
Y1 0
0 I

)
is nonsingular, and Q−1

1 (A− λ1I)Q1 =
(

N(λ1) 0
0 C1

)
or,

equivalently,

Q−1
1 AQ1 =

(
N(λ1) + λ1I 0

0 C1 + λ1I

)
=

(
J(λ1) 0
0 A1

)
. (7.8.2)

The upper-left-hand segment J(λ1) = N(λ1)+λ1I has the block-diagonal form

J(λ1) =




J1(λ1) 0 · · · 0
0 J2(λ1) · · · 0
...

...
. . .

...
0 0 · · · Jt1(λ1)


 with J⋆(λ1) = N⋆(λ1) + λ1I.

The matrix J(λ1) is called the Jordan segment associated with the eigenvalue
λ1, and the individual blocks J⋆(λ1) contained in J(λ1) are called Jordan

blocks associated with the eigenvalue λ1. The structure of the Jordan segment
J(λ1) is inherited from Jordan structure of the associated nilpotent matrix L1.

⊲ Each Jordan block looks like J⋆(λ1) = N⋆(λ1) + λ1I =




λ1 1
. . .

. . .

. . . 1
λ1


.

⊲ There are t1 = dimN (A− λ1I) such Jordan blocks in the segment J(λ1).

⊲ The number of i× i Jordan blocks J⋆(λ1) contained in J(λ1) is

νi(λ1) = ri−1(λ1)− 2ri(λ1)+ ri+1(λ1), where ri(λ1) = rank
(
(A−λ1I)

i
)
.

Since the distinct eigenvalues of A are σ (A) = {λ1, λ2, . . . , λs} , the distinct
eigenvalues of A− λ1I are

σ (A− λ1I) = {0, (λ2 − λ1), (λ3 − λ1), . . . , (λs − λ1)}.
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Couple this with the fact that the only eigenvalue for the nilpotent matrix L1

in (7.8.1) is zero to conclude that

σ (C1) = {(λ2 − λ1), (λ3 − λ1), . . . , (λs − λ1)}.
Therefore, the spectrum of A1 = C1+λ1I in (7.8.2) is σ (A1) = {λ2, λ3, . . . , λs}.
This means that the core-nilpotent decomposition process described above can
be repeated on A1 − λ2I to produce a nonsingular matrix Q2 such that

Q−1
2 A1Q2 =

(
J(λ2) 0
0 A2

)
, where σ (A2) = {λ3, λ4, . . . , λs}, (7.8.3)

and where J(λ2) = diag (J1(λ2), J2(λ2), . . . ,Jt2(λ2)) is a Jordan segment com-
posed of Jordan blocks J⋆(λ2) with the following characteristics.

⊲ Each Jordan block in J(λ2) has the form J⋆(λ2) =




λ2 1
. . .

. . .

. . . 1
λ2


.

⊲ There are t2 = dimN (A− λ2I) Jordan blocks in segment J(λ2).

⊲ The number of i× i Jordan blocks in segment J(λ2) is
νi(λ2) = ri−1(λ2)− 2ri(λ2) + ri+1(λ2), where ri(λ2) = rank

(
(A− λ2I)

i
)
.

If we set P2 = Q1

(
I 0
0 Q2

)
, then P2 is a nonsingular matrix such that

P−1
2 AP2 =



J(λ1) 0 0
0 J(λ2) 0
0 0 A2


 , where σ (A2) = {λ3, λ4, . . . , λs}.

Repeating this process until all eigenvalues have been depleted results in a
nonsingular matrix Ps such that P−1

s APs = J = diag (J(λ1), J(λ2), . . . ,J(λs))
in which each J(λj) is a Jordan segment containing tj = dimN (A− λjI) Jor-

dan blocks. The matrix J is called the Jordan form
79
for A (some texts refer

to J as the Jordan canonical form or the Jordan normal form). The Jordan
structure of A is defined to be the number of Jordan segments in J along
with the number and sizes of the Jordan blocks within each segment. The proof
of uniqueness of the Jordan form for a nilpotent matrix (p. 580) can be extended
to all A ∈ Cn×n. In other words, the Jordan structure of a matrix is uniquely
determined by its entries. Below is a formal summary of these developments.

79
Marie Ennemond Camille Jordan (1838–1922) discussed this idea (not over the complex num-
bers but over a finite field) in 1870 in Traité des substitutions et des équations algebraique
that earned him the Poncelet Prize of the Académie des Science. But Jordan may not have
been the first to develop these concepts. It has been reported that the German mathematician
Karl Theodor Wilhelm Weierstrass (1815–1897) had previously formulated results along these
lines. However, Weierstrass did not publish his ideas because he was fanatical about rigor, and
he would not release his work until he was sure it was on a firm mathematical foundation.
Weierstrass once said that “a mathematician who is not also something of a poet will never be
a perfect mathematician.”
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Jordan Form
For every A ∈ Cn×n with distinct eigenvalues σ (A) = {λ1, λ2, . . . , λs} ,
there is a nonsingular matrix P such that

P−1AP = J =




J(λ1) 0 · · · 0
0 J(λ2) · · · 0
...

...
. . .

...
0 0 · · · J(λs)


 . (7.8.4)

• J has one Jordan segment J(λj) for each eigenvalue λj ∈ σ (A) .

• Each segment J(λj) is made up of tj = dimN (A− λjI) Jordan

blocks J⋆(λj) as described below.

J(λj)=




J1(λj) 0 · · · 0
0 J2(λj) · · · 0
...

...
. . .

...
0 0 · · · Jtj(λj)


 with J⋆(λj) =




λj 1
. . .

. . .

. . . 1
λj


.

• The largest Jordan block in J(λj) is kj × kj , where kj = index (λj).

• The number of i× i Jordan blocks in J(λj) is given by

νi(λj)= ri−1(λj)− 2ri(λj) + ri+1(λj) with ri(λj)=rank
(
(A− λjI)

i
)
.

• Matrix J in (7.8.4) is called the Jordan form for A. The structure
of this form is unique in the sense that the number of Jordan seg-
ments in J as well as the number and sizes of the Jordan blocks in
each segment is uniquely determined by the entries in A. Further-
more, every matrix similar to A has the same Jordan structure—i.e.,
A,B ∈ Cn×n are similar if and only if A and B have the same
Jordan structure. The matrix P is not unique—see p. 594.

Example 7.8.1

Problem: Find the Jordan form for A =




5 4 0 0 4 3
2 3 1 0 5 1
0 −1 2 0 2 0
−8 −8 −1 2 −12 −7
0 0 0 0 −1 0
−8 −8 −1 0 −9 −5




.



7.8 Jordan Form 591

Solution: Computing the eigenvalues (which is the hardest part) reveals two
distinct eigenvalues λ1 = 2 and λ2 = −1, so there are two Jordan segments in

the Jordan form J =
(

J(2) 0
0 J(−1)

)
. Computing ranks ri(2) = rank

(
(A− 2I)i

)

and ri(−1) = rank
(
(A+ I)i

)
until rk(⋆) = rk+1(⋆) yields

r1(2) = rank (A− 2I) = 4, r1(−1) = rank (A+ I) = 4,

r2(2) = rank
(
(A− 2I)2

)
= 3, r2(−1) = rank

(
(A+ I)2

)
= 4,

r3(2) = rank
(
(A− 2I)3

)
= 2,

r4(2) = rank
(
(A− 2I)4

)
= 2,

so k1 = index (λ1) = 3 and k2 = index (λ2) = 1. This tells us that the largest
Jordan block in J(2) is 3× 3, while the largest Jordan block in J(−1) is 1× 1
so that J(−1) is a diagonal matrix (the associated eigenvalue is semisimple

whenever this happens). Furthermore,

ν3(2) = r2(2)− 2r3(2) + r4(2) = 1 =⇒ one 3× 3 block in J(2),

ν2(2) = r1(2)− 2r2(2) + r3(2) = 0 =⇒ no 2× 2 blocks in J(2),

ν1(2) = r0(2)− 2r1(2) + r2(2) = 1 =⇒ one 1× 1 block in J(2),

ν1(−1) = r0(−1)− 2r1(−1) + r2(−1) = 2 =⇒ two 1× 1 blocks in J(−1).

Therefore, J(2) =




2 1 0 0
0 2 1 0
0 0 2 0

0 0 0 2


 and J(−1) =

(
−1 0

0 −1

)
so that

J =

(
J(2) 0
0 J(−1)

)
=




2 1 0 0
0 2 1 0
0 0 2 0

0 0 0 2

0 0
0 0
0 0

0 0

0 0 0 0

0 0 0 0

−1 0

0 −1




.

The above example suggests that determining the Jordan form for An×n

is straightforward, and perhaps even easy. In theory, it is—just find σ (A) , and
calculate some ranks. But, in practice, both of these tasks can be difficult. To
begin with, the rank of a matrix is a discontinuous function of its entries, and rank
computed with floating-point arithmetic can vary with the algorithm used and is
often different than rank computed with exact arithmetic (recall Exercise 2.2.4).
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Furthermore, computing higher-index eigenvalues with floating-point arithmetic
is fraught with peril. To see why, consider the matrix

L(ǫ) =




0 1
. . .

. . .

. . . 1

ǫ 0




n×n

whose characteristic equation is λn − ǫ = 0.

For ǫ = 0, zero is the only eigenvalue (and it has index n ), but for all ǫ > 0,
there are n distinct eigenvalues given by ǫ1/ne2kπi/n for k = 0, 1, . . . , n−1. For
example, if n = 32, and if ǫ changes from 0 to 10−16, then the eigenvalues
of L(ǫ) change in magnitude from 0 to 10−1/2 ≈ .316, which is substantial for
such a small perturbation. Sensitivities of this kind present significant problems
for floating-point algorithms. In addition to showing that high-index eigenvalues
are sensitive to small perturbations, this example also shows that the Jordan
structure is highly discontinuous. L(0) is in Jordan form, and there is just one
Jordan block of size n, but for all ǫ �= 0, the Jordan form of L(ǫ) is a diagonal
matrix—i.e., there are n Jordan blocks of size 1× 1. Lest you think that this
example somehow is an isolated case, recall from Example 7.3.6 (p. 532) that
every matrix in Cn×n is arbitrarily close to a diagonalizable matrix.

All of the above observations make it clear that it’s hard to have faith in
a Jordan form that has been computed with floating-point arithmetic. Conse-
quently, numerical computation of Jordan forms is generally avoided.

Example 7.8.2

The Jordan form of A conveys complete information about the eigenvalues of
A. For example, if the Jordan form for A is

J =




4 1 0
4 1

4

4 1
0 4

3 1
0 3

2

2




,

then we know that

⊲ A9×9 has three distinct eigenvalues, namely σ (A) = {4, 3, 2};
⊲ alg mult (4) = 5, alg mult (3) = 2, and alg mult (2) = 2;

⊲ geo mult (4) = 2, geo mult (3) = 1, and geo mult (2) = 2;
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⊲ index (4) = 3, index (3) = 2, and index (2) = 1;

⊲ λ = 2 is a semisimple eigenvalue, so, while A is not diagonalizable, part of
it is; i.e., the restriction A/N(A−2I)

is a diagonalizable linear operator.

Of course, if both P and J are known, then A can be completely reconstructed
from (7.8.4), but the point being made here is that only J is needed to reveal
the eigenstructure along with the other similarity invariants of A.

Now that the structure of the Jordan form J is known, the structure of the
similarity transformation P such that P−1AP = J is easily revealed. Focus
on a single p× p Jordan block J⋆(λ) contained in the Jordan segment J(λ)
associated with an eigenvalue λ, and let P⋆ = [x1 x2 · · · xp ] be the portion of
P = [ · · · |P⋆ | · · ·] that corresponds to the position of J⋆(λ) in J. Notice that
AP = PJ implies AP⋆ = P⋆J⋆(λ) or, equivalently,

A[x1 x2 · · · xp ] = [x1 x2 · · · xp ]




λ 1
. . .

. . .

. . . 1

λ




p×p

,

so equating columns on both sides of this equation produces

Ax1 = λx1 =⇒ x1 is an eigenvector =⇒ (A− λI)x1 = 0,

Ax2 = x1 + λx2 =⇒ (A− λI)x2 = x1 =⇒ (A− λI)
2
x2 = 0,

Ax3 = x2 + λx3 =⇒ (A− λI)x3 = x2 =⇒ (A− λI)
3
x3 = 0,

...
...

...
Axp = xp−1 + λxp =⇒ (A− λI)xp = xp−1 =⇒ (A− λI)

p
xp = 0.

In other words, the first column x1 in P⋆ is a eigenvector for A associated with
λ. We already knew there had to be exactly one independent eigenvector for each
Jordan block because there are t = dimN (A− λI) Jordan blocks J⋆(λ), but
now we know precisely where these eigenvectors are located in P.

Vectors x such that x ∈ N
(
(A−λI)g

)
but x �∈ N

(
(A−λI)g−1

)
are called

generalized eigenvectors of order g associated with λ. So P⋆ consists of an
eigenvector followed by generalized eigenvectors of increasing order. Moreover,
the columns of P⋆ form a Jordan chain analogous to (7.7.2) on p. 576; i.e.,

xi = (A− λI)
p−i

xp implies P⋆ must have the form

P⋆ =
[
(A− λI)

p−1
xp | (A− λI)

p−2
xp | · · · | (A− λI)xp |xp

]
. (7.8.5)

A complete set of Jordan chains associated with a given eigenvalue λ is de-
termined in exactly the same way as Jordan chains for nilpotent matrices are
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determined except that the nested subspaces Mi defined in (7.7.1) on p. 575
are redefined to be

Mi = R
(
(A− λI)i

)
∩N (A− λI) for i = 0, 1, . . . , k, (7.8.6)

where k = index (λ). Just as in the case of nilpotent matrices, it follows that
0 = Mk ⊆ Mk−1 ⊆ · · · ⊆ M0 = N (A− λI) (see Exercise 7.8.8). Since
(A− λI)/N ((A−λI)k)

is a nilpotent linear operator of index k (Example 5.10.4,

p. 399), it can be argued that the same process used to build Jordan chains for
nilpotent matrices can be used to build Jordan chains for a general eigenvalue
λ. Below is a summary of the process adapted to the general case.

Constructing Jordan Chains
For each λ ∈ σ (An×n) , set Mi = R

(
(A − λI)i

)
∩ N (A− λI) for

i = k − 1, k − 2, . . . , 0, where k = index (λ).

• Construct a basis B for N (A− λI).

⊲ Starting with any basis Sk−1 for Mk−1 (see p. 211), sequentially
extend Sk−1 with sets Sk−2, Sk−3, . . . , S0 such that

Sk−1 is a basis for Mk−1,
Sk−1 ∪ Sk−2 is a basis for Mk−2,
Sk−1 ∪ Sk−2 ∪ Sk−3 is a basis for Mk−3,

etc., until a basis B = Sk−1 ∪ Sk−2 ∪ · · · ∪ S0 = {b1,b2, . . . ,bt}
for M0 = N (A− λI) is obtained (see Example 7.7.3 on p. 582).

• Build a Jordan chain on top of each eigenvector b⋆ ∈ B.
⊲ For each eigenvector b⋆ ∈ Si, solve (A− λI)

i
x⋆ = b⋆ (a neces-

sarily consistent system) for x⋆, and construct a Jordan chain on
top of b⋆ by setting

P⋆ =
[
(A− λI)

i
x⋆
∣∣ (A− λI)

i−1
x⋆
∣∣ · · ·

∣∣ (A− λI)x⋆
∣∣x⋆
]

(i+1)×n
.

⊲ Each such P⋆ corresponds to one Jordan block J⋆(λ) in the Jor-
dan segment J(λ) associated with λ.

⊲ The first column in P⋆ is an eigenvector, and subsequent columns
are generalized eigenvectors of increasing order.

• If all such P⋆ ’s for a given λj ∈ σ (A) = {λ1, λ2, . . . , λs} are put in
a matrix Pj , and if P =

[
P1 |P2 | · · · |Ps

]
, then P is a nonsingu-

lar matrix such that P−1AP = J = diag (J(λ1), J(λ2), . . . ,J(λs))
is in Jordan form as described on p. 590.
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Example 7.8.3

Caution! Not every basis for N(A− λI) can be used to build Jordan chains
associated with an eigenvalue λ ∈ σ (A) . For example, the Jordan form of

A =




3 0 1
−4 1 −2
−4 0 −1


 is J =



1 1 0
0 1 0

0 0 1




because σ (A) = {1} and index (1) = 2. Consequently, if P = [x1 |x2 |x3 ]
is a nonsingular matrix such that P−1AP = J, then the derivation beginning
on p. 593 leading to (7.8.5) shows that {x1,x2} must be a Jordan chain such
that (A− I)x1 = 0 and (A− I)x2 = x1, while x3 is another eigenvector (not
dependent on x1 ). Suppose we try to build the Jordan chains in P by starting
with the eigenvectors

x1 =




1
0
−2


 and x3 =



0
1
0


 (7.8.7)

obtained by solving (A− I)x = 0 with straightforward Gauss–Jordan elimina-
tion. This naive approach fails because x1 �∈ R (A− I) means (A− I)x2 = x1 is
an inconsistent system, so x2 cannot be determined. Similarly, x3 �∈ R (A− I)
insures that the same difficulty occurs if x3 is used in place of x1. In other
words, even though the vectors in (7.8.7) constitute an otherwise perfectly good
basis for N (A− I), they are not suitable for building Jordan chains. You are
asked in Exercise 7.8.2 to find the correct basis for N (A− I) that will yield the
Jordan chains that constitute P.

Example 7.8.4

Problem: What do the results concerning the Jordan form for A ∈ Cn×n say
about the decomposition of Cn into invariant subspaces?

Solution: Consider P−1AP = J = diag (J(λ1), J(λ2), . . . ,J(λs)) , where the
J(λj) ’s are the Jordan segments and P =

[
P1 |P2 | · · · |Ps

]
is a matrix of

Jordan chains as described in (7.8.5) and on p. 594. If A is considered as a
linear operator on Cn, and if the set of columns in Pi is denoted by Ji, then
the results in §4.9 (p. 259) concerning invariant subspaces together with those
in §5.9 (p. 383) about direct sum decompositions guarantee that each R (Pi) is
an invariant subspace for A such that

Cn = R (P1)⊕R (P2)⊕ · · · ⊕R (Ps) and J(λi) =
[
A/R(Pi)

]

Ji

.

More can be said. If alg mult (λi) = mi and index (λi) = ki, then Ji is a
linearly independent set containing mi vectors, and the discussion surrounding
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(7.8.5) insures that each column in Ji belongs to N
(
(A−λiI)

ki
)
. This coupled

with the fact that dimN
(
(A − λiI)

ki
)
) = mi (Exercise 7.8.7) implies that Ji

is a basis for
R (Pi) = N

(
(A− λiI)

ki
)
.

Consequently, each N
(
(A− λiI)

ki
)
is an invariant subspace for A such that

Cn = N
(
(A− λ1I)

k1
)
⊕N

(
(A− λ2I)

k2
)
⊕ · · · ⊕N

(
(A− λsI)

ks
)

and

J(λi) =

[
A/N

(
(A−λiI)ki

)
]

Ji

.

Of course, an even finer direct sum decomposition of Cn is possible because
each Jordan segment is itself a block-diagonal matrix containing the individual
Jordan blocks—the details are left to the interested reader.

Exercises for section 7.8

7.8.1. Find the Jordan form of the following matrix whose distinct eigenvalues
are σ (A) = {0,−1, 1}. Don’t be frightened by the size of A.

A =




−4 −5 −3 1 −2 0 1 −2
4 7 3 −1 3 0 −1 2
0 −1 0 0 0 0 0 0

−1 1 2 −4 2 0 −3 1
−8 −14 −5 1 −6 0 1 −4
4 7 4 −3 3 −1 −3 4
2 −2 −2 5 −3 0 4 −1
6 7 3 0 2 0 0 3



.

7.8.2. For the matrix A =

(
3 0 1

−4 1 −2
−4 0 −1

)
that was used in Example 7.8.3, use

the technique described on p. 594 to construct a nonsingular matrix P
such that P−1AP = J is in Jordan form.

7.8.3. Explain why index (λ) ≤ alg mult (λ) for each λ ∈ σ (An×n) .

7.8.4. Explain why index (λ) = 1 if and only if λ is a semisimple eigenvalue.

7.8.5. Prove that every square matrix is similar to its transpose. Hint: Con-

sider the “reversal matrix” R =




1
1

.
.

.
1


 obtained by reversing the

order of the rows (or the columns) of the identity matrix I.
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7.8.6. Cayley–Hamilton Revisited. Prove the the Cayley–Hamilton theo-
rem (pp. 509, 532) by means of the Jordan form; i.e., prove that every
A ∈ Cn×n satisfies its own characteristic equation.

7.8.7. Prove that if λ is an eigenvalue of A ∈ Cn×n such that index (λ) = k
and alg multA (λ) = m, then dimN

(
(A − λI)k

)
= m. Is it also true

that dimN
(
(A− λI)m

)
= m?

7.8.8. Let λj be an eigenvalue of A with index (λj) = kj . Prove that if
Mi(λj) = R

(
(A− λjI)

i
)
∩N (A− λjI), then

0 =Mkj
(λj) ⊆Mkj−1(λj) ⊆ · · · ⊆ M0(λj) = N (A− λjI).

7.8.9. Explain why (A−λjI)
ix = b(λj) must be a consistent system whenever

λj ∈ σ (A) and b(λj) ∈ Si(λj), where b(λj) and Si(λj) are as defined
on p. 594.

7.8.10. Does the result of Exercise 7.7.5 extend to nonnilpotent matrices? That
is, if λ ∈ σ (A) with index (λ) = k > 1, is Mk−1 = R

(
(A− λI)k−1

)
?

7.8.11. As defined in Exercise 5.8.15 (p. 380) and mentioned in Exercise 7.6.10

(p. 573), the Kronecker
80
product (sometimes called tensor product ,

80
Leopold Kronecker (1823–1891) was born in Liegnitz, Prussia (now Legnica, Poland), to a
wealthy business family that hired private tutors to educate him until he enrolled at Gymna-
sium at Liegnitz where his mathematical talents were recognized by Eduard Kummer (1810–
1893), who became his mentor and lifelong colleague. Kronecker went to Berlin University
in 1841 to earn his doctorate, writing on algebraic number theory, under the supervision of
Dirichlet (p. 563). Rather than pursuing a standard academic career, Kronecker returned to
Liegnitz to marry his cousin and become involved in his uncle’s banking business. But he never
lost his enjoyment of mathematics. After estate and business interests were left to others in
1855, Kronecker joined Kummer in Berlin who had just arrived to occupy the position vacated
by Dirichlet’s move to Göttingen. Kronecker didn’t need a salary, so he didn’t teach or hold a
university appointment, but his research activities led to his election to the Berlin Academy in
1860. He declined the offer of the mathematics chair in Göttingen in 1868, but he eventually
accepted the chair in Berlin that was vacated upon Kummer’s retirement in 1883. Kronecker
held the unconventional view that mathematics should be reduced to arguments that involve
only integers and a finite number of steps, and he questioned the validity of nonconstructive
existence proofs, so he didn’t like the use of irrational or transcendental numbers. Kronecker be-
came famous for saying that “God created the integers, all else is the work of man.” Kronecker’s
significant influence led to animosity with people of differing philosophies such as Georg Cantor
(1845–1918), whose publications Kronecker tried to block. Kronecker’s small physical size was
another sensitive issue. After Hermann Schwarz (p. 271), who was Kummer’s son-in-law and
a student of Weierstrass (p. 589), tried to make a joke involving Weierstrass’s large physique
by stating that “he who does not honor the Smaller, is not worthy of the Greater,” Kronecker
had no further dealings with Schwarz.
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or direct product) of Am×n and Bp×q is the mp× nq matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB


 .

(a) Assuming conformability, establish the following properties.

◦ A⊗ (B⊗C) = (A⊗B)⊗C.
◦ A⊗ (B+C) = (A⊗B) + (A⊗C).
◦ (A+B)⊗C = (A⊗C) + (B⊗C).
◦ (A1 ⊗B1)(A2 ⊗B2) · · · (Ak ⊗Bk) = (A1 · · ·Ak)⊗ (B1 · · ·Bk).
◦ (A⊗B)∗ = A∗ +B∗.
◦ rank (A⊗B) = (rank (A))(rank (B)).

Assume A is m×m and B is n× n for the following.

◦ trace (A⊗B) = (trace (A))(trace (B)).
◦ (A⊗ In)(Im ⊗B) = A⊗B = (Im ⊗B)(A⊗ In).
◦ det (A⊗B) = (det (A))m(det (B))n.
◦ (A⊗B)−1 = A−1 ⊗B−1.

(b) Let the eigenvalues of Am×m be denoted by λi and let the eigenvalues
of Bn×n be denoted by µj . Prove the following.

◦ The eigenvalues of A⊗B are the mn numbers {λiµj}mi=1
n
j=1.

◦ The eigenvalues of (A⊗ In) + (Im ⊗B) are {λi + µj}mi=1
n
j=1.

7.8.12. Use part (b) of Exercise 7.8.11 along with the result of Exercise 7.6.10
(p. 573) to construct an alternate derivation of (7.6.8) on p. 566. That
is, show that the n2 eigenvalues of the discrete Laplacian Ln2×n2 de-
scribed in Example 7.6.2 (p. 563) are given by

λij = 4

[
sin2

(
iπ

2(n+ 1)

)
+ sin2

(
jπ

2(n+ 1)

)]
, i, j = 1, 2, . . . , n.

Hint: Recall Exercise 7.2.18 (p. 522).

7.8.13. Determine the eigenvalues of the three-dimensional discrete Laplacian
by using the formula from Exercise 7.6.10 (p. 573) that states

Ln3×n3 = (In ⊗ In ⊗An) + (In ⊗An ⊗ In) + (An ⊗ In ⊗ In).
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7.9 FUNCTIONS OF NONDIAGONALIZABLE MATRICES

The development of functions of nondiagonalizable matrices parallels the devel-
opment for functions of diagonal matrices that was presented in §7.3 except that
the Jordan form is used in place of the diagonal matrix of eigenvalues. Recall
from the discussion surrounding (7.3.5) on p. 526 that if A ∈ Cn×n is diago-
nalizable, say A = PDP−1, where D = diag (λ1I, λ2I, . . . , λsI) , and if f(λi)
exists for each λi, then f(A) is defined to be

f(A) = Pf(D)P−1 = P




f(λ1)I 0 · · · 0
0 f(λ2)I · · · 0

...
...

. . .
...

0 0 · · · f(λs)I


P−1.

The Jordan decomposition A = PJP−1 described on p. 590 easily provides a
generalization of this idea to nondiagonalizable matrices. If J is the Jordan form
for A, it’s natural to define f(A) by writing f(A) = Pf(J)P−1. However,
there are a couple of wrinkles that need to be ironed out before this notion
actually makes sense. First, we have to specify what we mean by f(J)—this is
not as clear as f(D) is for diagonal matrices. And after this is taken care of
we need to make sure that Pf(J)P−1 is a uniquely defined matrix. This also
is not clear because, as mentioned on p. 590, the transforming matrix P is not
unique—it would not be good if for a given A you used one P, and I used
another, and this resulted in your f(A) being different than mine.

Let’s first make sense of f(J). Assume throughout that A = PJP−1∈Cn×n

with σ (A) = {λ1, λ2, . . . , λs} and where J = diag (J(λ1),J(λ2), . . . ,J(λs)) is
the Jordan form for A in which each segment J(λj) is a block-diagonal matrix
containing one or more Jordan blocks. That is,

J(λj) =




J1(λj) 0 · · · 0
0 J2(λj)· · · 0

.

..
.
..

. . .
.
..

0 0 · · ·Jtj
(λj)


 with J⋆(λj) =




λj 1

. . .
. . .
. . . 1

λj


 .

We want to define f(J) to be

f(J) =




f
(
J(λ1)

)

. . .
f
(
J(λs)

)


 with f

(
J(λj)

)
=




. . .
f
(
J⋆(λj)

)

. . .


 ,

but doing so requires that we give meaning to f
(
J⋆(λj)

)
. To keep the notation

from getting out of hand, let J⋆ =

(
λ 1

. . .
. . .

λ

)
denote a generic k × k Jordan
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block, and let’s develop a definition of f(J⋆). Suppose for a moment that f(z)
is a function from C into C that has a Taylor series expansion about λ. That
is, for some r > 0,

f(z) = f(λ)+f ′(λ)(z−λ)+f ′′(λ)
2!

(z−λ)2+f ′′′(λ)
3!

(z−λ)3+ · · · for |z−λ| < r.

The representation (7.3.7) on p. 527 suggests that f(J⋆) should be defined as

f(J⋆) = f(λ)I+ f ′(λ)(J⋆ − λI) +
f ′′(λ)
2!

(J⋆ − λI)2 +
f ′′′(λ)
3!

(J⋆ − λI)3 + · · · .

But since N = J⋆ − λI is nilpotent of index k, this series is just the finite sum

f(J⋆) =

k−1∑

i=0

f (i)(λ)

i!
Ni, (7.9.1)

and this means that only f(λ), f ′(λ), . . . , f (k−1)(λ) are required to exist. Also,

N=




0 1

. . .
. . .

. . . 1

0


, N2=




0 0 1

. . .
. . .

. . .

. . .
. . .

1

0
0

0


, . . . , Nk−1=




0 0 · · · 1

. . .
.
.
.

. . . 0

0


,

so the representation of f(J⋆) in (7.9.1) can be elegantly expressed as follows.

Functions of Jordan Blocks
For a k × k Jordan block J⋆ with eigenvalue λ, and for a function
f(z) such that f(λ), f ′(λ), . . . , f (k−1)(λ) exist, f(J⋆) is defined to be

f(J⋆) = f




λ 1

. . .
. . .

. . . 1

λ


 =




f(λ) f ′(λ)
f ′′(λ)

2!
· · · f(k−1)(λ)

(k − 1)!

f(λ) f ′(λ)
. . .

.

.

.

. . .
. . .

f ′′(λ)

2!

f(λ) f ′(λ)

f(λ)




. (7.9.2)
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Every Jordan form J =

(
. . . J⋆

. . .

)
is a block-diagonal matrix composed of

various Jordan blocks J⋆, so (7.9.2) allows us to define f(J) =

(
. . .f(J⋆)

. . .

)
as

long as we pay attention to the fact that a sufficient number of derivatives of f
are required to exist at the various eigenvalues. More precisely, if the size of the
largest Jordan block associated with an eigenvalue λ is k (i.e., if index (λ) = k),
then f(λ), f ′(λ), . . . , f (k−1)(λ) must exist in order for f(J) to make sense.

Matrix Functions
For A ∈ Cn×n with σ (A) = {λ1, λ2, . . . , λs} , let ki = index (λi).

• A function f : C → C is said to be defined (or to exist) at A when
f(λi), f

′(λi), . . . , f (ki−1)(λi) exist for each λi ∈ σ (A) .

• Suppose that A = PJP−1, where J =

(
. . . J⋆

. . .

)
is in Jordan form

with the J⋆ ’s representing the various Jordan blocks described on
p. 590. If f exists at A, then the value of f at A is defined to be

f(A) = Pf(J)P−1 = P



. . .

f(J⋆)
. . .


P−1, (7.9.3)

where the f(J⋆) ’s are as defined in (7.9.2).

We still need to explain why (7.9.3) produces a uniquely defined matrix.
The following argument will not only accomplish this purpose, but it will also
establish an alternate expression for f(A) that involves neither the Jordan form
J nor the transforming matrix P. Begin by partitioning J into its s Jordan
segments as described on p. 590, and partition P and P−1 conformably as

P =
(
P1 | · · · |Ps

)
, J =



J(λ1)

. . .
J(λs)


 , and P−1 =



Q1
...

Qs


 .

Define Gi = PiQi, and observe that if ki = index (λi), then Gi is the pro-
jector onto N

(
(A − λiI)

ki
)

along R
(
(A − λiI)

ki
)
. To see this, notice that

Li = J(λi)− λiI is nilpotent of index ki, but J(λj)−λiI is nonsingular when
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i �= j, so

(A− λiI) = P(J− λiI)P
−1 = P




J(λ1)− λiI
. . .

Li

. . .

J(λs)− λiI


P−1 (7.9.4)

is a core-nilpotent decomposition as described on p. 397 (reordering the eigenval-
ues can put the nilpotent block Li on the bottom to realize the form in (5.10.5)).
Consequently, the results in Example 5.10.3 (p. 398) insure that PiQi = Gi is
the projector onto N

(
(A − λiI)

ki
)
along R

(
(A − λiI)

ki
)
, and this is true for

all similarity transformations that reduce A to J. If A happens to be diago-
nalizable, then ki = 1 for each i, and the matrices Gi = PiQi are precisely
the spectral projectors defined on p. 517. For this reason, there is no ambigu-
ity in continuing to use the Gi notation, and we will continue to refer to the
Gi ’s as spectral projectors. In the diagonalizable case, Gi projects onto the
eigenspace associated with λi, and in the nondiagonalizable case Gi projects
onto the generalized eigenspace associated with λi.

Now consider

f(A) = Pf(J)P−1 = P




f
(
J(λ1)

)

. . .
f
(
J(λs)

)


P−1 =

s∑

i=1

Pif
(
J(λi)

)
Qi.

(7.9.5)

Since f
(
J(λi)

)
=




. . .
f
(
J⋆(λi)

)

. . .


 , where the J⋆(λi) ’s are the Jordan blocks

associated with λi, (7.9.2) insures that if ki = index (λi), then

f
(
J(λi)

)
= f(λi)I+ f ′(λi)Li +

f ′′(λi)
2!

L2
i + · · ·+

f (ki−1)(λi)

(ki − 1)!
Lki−1
i ,

where Li = J(λi)− λiI, and thus (7.9.5) becomes

f(A) =
s∑

i=1

Pif
(
J(λi)

)
Qi =

s∑

i=1

ki−1∑

j=0

f (j)(λi)

j!
PiL

j
iQi. (7.9.6)

The terms PiL
j
iQi can be simplified by noticing that

P−1P = I =⇒ QiPj =

{
I if i = j,
0 if i �= j,

=⇒ P−1Gi =




Q1
...

Qi
...

Qs


PiQi =




0.
..

Qi
...
0


 ,
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and by using this with (7.9.4) to conclude that

(A− λiI)
jGi = P




(
J(λ1)− λiI

)j

. . .
L

j
i

. . .(
J(λs)− λiI

)j



P−1Gi = PiL

j
iQi. (7.9.7)

Thus (7.9.6) can be written as

f(A) =
s∑

i=1

ki−1∑

j=0

f (j)(λi)

j!
(A− λiI)

jGi, (7.9.8)

and this expression is independent of which similarity is used to reduce A to J.
Not only does (7.9.8) prove that f(A) is uniquely defined, but it also provides
a generalization of the spectral theorems for diagonalizable matrices given on
pp. 517 and 526 because if A is diagonalizable, then each ki = 1 so that (7.9.8)
reduces to (7.3.6) on p. 526. Below is a formal summary along with some related
properties.

Spectral Resolution off(A)

For A ∈ Cn×n with σ (A) = {λ1, λ2, . . . , λs} such that ki = index (λi),
and for a function f : C → C such that f(λi), f

′(λi), . . . , f (ki−1)(λi)
exist for each λi ∈ σ (A) , the value of f(A) is

f(A) =
s∑

i=1

ki−1∑

j=0

f (j)(λi)

j!
(A− λiI)

jGi, (7.9.9)

where the spectral projectors Gi ’s have the following properties.

• Gi is the projector onto the generalized eigenspace N
(
(A−λiI)

ki
)

along R
(
(A− λiI)

ki
)
.

• G1 +G2 + · · ·+Gs = I. (7.9.10)

• GiGj = 0 when i �= j. (7.9.11)

• Ni = (A− λiI)Gi = Gi(A− λiI) is nilpotent of index ki. (7.9.12)

• If A is diagonalizable, then (7.9.9) reduces to (7.3.6) on p. 526, and
the spectral projectors reduce to those described on p. 517.
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Proof of (7.9.10)–(7.9.12). Property (7.9.10) results from using (7.9.9) with the
function f(z) = 1, and property (7.9.11) is a consequence of

I = P−1P =⇒ QiPj =

{
I if i = j,
0 if i �= j.

(7.9.13)

To prove (7.9.12), establish that (A − λiI)Gi = Gi(A − λiI) by noting that

(7.9.13) implies P−1Gi =
(
0 · · ·Qi · · ·0

)T
and GiP =

(
0 · · ·Pi · · ·0

)
. Use this

with (7.9.4) to observe that (A− λiI)Gi = PiLiQi = Gi(A− λiI). Now

Nj
i = (PiLiQi)

j = PiL
j
iQi for j = 1, 2, 3, . . . ,

and thus Ni is nilpotent of index ki because Li is nilpotent of index ki.

Example 7.9.1

A coordinate-free version of the representation in (7.9.3) results by separating
the first-order terms in (7.9.9) from the higher-order terms to write

f(A) =
s∑

i=1


f(λi)Gi +

ki−1∑

j=1

f (j)(λi)

j!
Nj

i


 .

Using the identity function f(z) = z produces a coordinate-free version of the
Jordan decomposition of A in the form

A =
s∑

i=1

[
λiGi +Ni

]
,

and this is the extension of (7.2.7) on p. 517 to the nondiagonalizable case.
Another version of (7.9.9) results from lumping things into one matrix to write

f(A) =

s∑

i=1

ki−1∑

j=0

f (j)(λi)Zij , where Zij =
(A− λiI)

jGi

j!
. (7.9.14)

The Zij ’s are often called the component matrices or the constituent matrices.

Example 7.9.2

Problem: Describe f(A) for functions f defined at A =

(
6 2 8

−2 2 −2
0 0 2

)
.

Solution: A is block triangular, so it’s easy to see that λ1 = 2 and λ2 = 4
are the two distinct eigenvalues with index (λ1) = 1 and index (λ2) = 2. Thus
f(A) exists for all functions such that f(2), f(4), and f ′(4) exist, in which case

f(A) = f(2)G1 + f(4)G2 + f ′(4)(A− 4I)G2.

The spectral projectors could be computed directly, but things are easier if some
judicious choices of f are made. For example,
{
f(z) = 1 ⇒ I = f(A) = G1 +G2

f(z) = (z − 4)2 ⇒ (A− 4I)2 = f(A) = 4G1

}
=⇒ G1 = (A− 4I)2/4,

G2 = I−G1.
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Now that the spectral projectors are known, any function defined at A can be
evaluated. For example, if f(z) = z1/2, then

f(A) =
√
A =

√
2G1 +

√
4G2 + (1/2

√
4)(A− 4I)G2 =

1

2




5 1 7− 2
√
2

−1 3 5− 4
√
2

0 0 2
√
2


 .

This technique illustrated above is rather ad hoc, but it always works if a suf-
ficient number of appropriate functions are used. For example, using f(z) = zp

for p = 0, 1, 2, . . . will always produce a system of equations that will yield the
component matrices Zij given in (7.9.14) because

for f(z) = 1: I =
∑
Zi0,

for f(z) = z : A =
∑

λiZi0 +
∑
Zi1,

for f(z) = z2 : A2 =
∑

λ2
iZi0 +

∑
2λiZi1 +

∑
2Zi2,

...

and this can be considered as a generalized Vandermonde linear system (p. 185)




1 · · · 1
λ1 · · · λs 1 · · · 1
λ2

1 · · · λ2
s 2λ1 · · · 2λs 2 · · · 2

...
...

...
...

...
...

· · · · · · · · · · · ·







Z10
.
.
.

Zs0

Z11
.
.
.

Zs1

Z21
.
.
.




=




I
A
A2

A3

...




that can be solved for the Zij ’s. Other sets of polynomials such as

{1, (z − λ1)
k1 , (z − λ1)

k2(z − λ2)
k2 , . . . (z − λ1)

k1 · · · (z − λs)
ks}

will generate other linear systems that yield solutions containing the Zij ’s.

Example 7.9.3

Series Representations. Suppose that
∑∞

j=0 cj(z−z0)
j converges to f(z) at

each point inside a circle |z − z0| = r, and suppose that A is a matrix such
that |λi − z0| < r for each eigenvalue λi ∈ σ (A) .

Problem: Explain why
∑∞

j=0 cj(A− z0I)
j converges to f(A).

Solution: If P−1AP = J is in Jordan form as described on p. 601, then it’s
not difficult to argue that

∑∞
j=0 cj(A− z0I)

j converges if and only if

P−1

( ∞∑

j=0

cj(A−z0I)
j

)
P=

∞∑

j=0

cjP
−1(A−z0I)

jP=

∞∑

j=0

cj(J−z0I)
j=




. . .
∞∑

j=0

cj(J⋆ − z0I)
j

. . .
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converges. Consequently, it suffices to prove that
∑∞

j=0 cj(J⋆ − z0I)
j converges

to f(J⋆) for a generic k × k Jordan block

J⋆ =

(
λ 1

. . .
. . .

λ

)
= λI+N, where N =

(
0 1

. . .
. . .

0

)

k×k

.

A standard theorem from analysis states that if
∑∞

j=0 cj(z − z0)
j converges to

f(z) when |z − z0| < r, then the series may be differentiated term by term
to yield series that converge to derivatives of f at points inside the circle of
convergence. Consequently, for each i = 0, 1, 2, . . . ,

f (i)(z)

i!
=

∞∑

j=0

cj

(
j

i

)
(z − z0)

j−i when |z − z0| < r. (7.9.15)

We know from (7.9.1) (with f(z) = zj ) that

(J⋆−z0I)
j = (λ−z0)

jI+

(
j

1

)
(λ−z0)

j−1N+ · · ·+
(

j

k − 1

)
(λ−z0)

j−(k−1)Nk−1,

so this together with (7.9.15) produces

∞∑

j=0

cj(J⋆ − z0I)
j =




∞∑

j=0

cj(λ− z0)
j


 I+




∞∑

j=0

cj

(
j

1

)
(λ− z0)

j−1


N

+ · · ·+




∞∑

j=0

cj

(
j

k − 1

)
(λ− z0)

j−(k−1)


Nk−1

= f(λ)I+ f ′(λ)N+ · · ·+ f (k−1)

(k − 1)!
(λ)Nk−1 = f(J∗).

Note: The result of this example validates the statements made on p. 527.

Example 7.9.4

All Matrix Functions Are Polynomials. It was pointed out on p. 528
that if A is diagonalizable, and if f(A) exists, then there is a polynomial
p(z) such that f(A) = p(A), and you were asked in Exercise 7.3.7 (p. 539)
to use the Cayley–Hamilton theorem (pp. 509, 532) to extend this property to
nondiagonalizable matrices for functions that have an infinite series expansion.
We can now see why this is true in general.

Problem: For a function f defined at A ∈ Cn×n, exhibit a polynomial p(z)
such that f(A) = p(A).
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Solution: Suppose that σ (A) = {λ1, λ2, . . . , λs} with index (λi) = ki. The
trick is to find a polynomial p(z) such that for each i = 1, 2, . . . , s,

p(λi) = f(λi), p′(λi) = f ′(λi), . . . , p(ki−1)(λi) = f (ki−1)(λi) (7.9.16)

because if such a polynomial exists, then (7.9.9) guarantees that

p(A) =

s∑

i=1

ki−1∑

j=0

p(j)(λi)

j!
(A− λiI)

jGi =

s∑

i=1

ki−1∑

j=0

f (j)(λi)

j!
(A− λiI)

jGi = f(A).

Since there are k =
∑s

i=1 ki equations in (7.9.16) to be satisfied, let’s look for
a polynomial of the form

p(z) = α0 + α1z + α2z
2 + · · ·+ αk−1z

k−1

by writing the equations in (7.9.16) as the following k × k linear system Hx = f :

p(λ1) = f(λ1)

.

.

.
p(λs) = f(λs)

.

.

.
p′(λi) = f ′(λi)

.

.

.

.

.

.
p′′(λi) = f ′′(λi)

.

.

.

.

.

.

⇒

⇒

⇒

⇒




1 λ1 λ2
1 λ3

1 · · · λk−1
1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
1 λs λ2

s λ3
s · · · λk−1

s

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 1 2λi 3λ2

i · · · (k − 1)λk−2
i

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0 0 2 6λi · · · (k − 1)(k − 2)λ

(k−3)
i

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.







α0

α1

α2

α3

.

.

.

.

.

.

.

.

.

αk−1




=




f(λ1)

.

.

.
f(λs)

.

.

.
f ′(λi)

.

.

.

.

.

.
f ′′(λi)

.

.

.

.

.

.




.

The coefficient matrix H can be proven to be nonsingular because the rows in
each segment of H are linearly independent. The rows in the top segment of
H are a subset of rows from a Vandermonde matrix (p. 185), while the nonzero
portion of each succeeding segment has the form VD, where the rows of V are
a subset of rows from a Vandermonde matrix and D is a nonsingular diagonal
matrix. Consequently, Hx = f has a unique solution, and thus there is a unique
polynomial p(z) = α0 + α1z + α2z

2 + · · · + αk−1z
k−1 that satisfies the condi-

tions in (7.9.16). This polynomial p(z) is called the Hermite interpolation

polynomial, and it has the property that f(A) = p(A).
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Example 7.9.5

Functional Identities. Scalar functional identities generally extend to the
matrix case. For example, the scalar identity sin2 z + cos2 z = 1 extends to
matrices as sin2 Z + cos2 Z = I, and this is valid for all Z ∈ Cn×n. While
it’s possible to prove such identities on a case-by-case basis by using (7.9.3) or
(7.9.9), there is a more robust approach that is described below.

For two functions f1 and f2 from C into C and for a polynomial p(x, y) in
two variables, let h be the composition defined by h(z) = p

(
f1(z), f2(z)

)
. If

An×n has eigenvalues σ (A) = {λ1, λ2, . . . , λs} with index (λi) = ki, and if h
is defined at A, then we are allowed to assert that h(A) = p

(
f1(A), f2(A)

)

because Example 7.9.4 insures that there are polynomials g(z) and q(z) such
that h(A) = g(A) and p

(
f1(A), f2(A)

)
= q(A), where for each λi ∈ σ (A) ,

g(j)(λi) = h(j)(λi) =
d j
[
p
(
f1(z), f2(z)

)]

dzj

∣∣∣∣∣
z=λi

= q(j)(λi) for j = 0, 1, . . . , ki − 1,

so g(A) = q(A), and thus h(A) = p
(
f1(A), f2(A)

)
. To build functional iden-

tities for A, choose f1 and f2 in h(z) = p
(
f1(z), f2(z)

)
that will make

h(λi) = h′(λi) = h′′(λi) = · · · = h(ki−1)(λi) = 0 for each λi ∈ σ (A) ,

thereby insuring that 0 = h(A) = p
(
f1(A), f2(A)

)
. This technique produces a

plethora of functional identities. For example, using





f1(z) = sin2 z
f2(z) = cos2 z
p(x, y) = x2 + y2 − 1



 produces h(z) = p

(
f1(z), f2(z)

)
= sin2 z + cos2 z − 1.

Since h(z) = 0 for all z ∈ C, it follows that h(Z) = 0 for all Z ∈ Cn×n, and
thus sin2 Z+cos2 Z = I for all Z ∈ Cn×n. It’s evident that this technique can be
extended to include any number of functions f1, f2, . . . , fm with a polynomial
p(x1, x2, . . . , xm) to produce even more complicated relationships.

Example 7.9.6

Systems of Differential Equations Revisited. The purpose here is to ex-
tend the discussion in §7.4 to cover the nondiagonalizable case. Write the system
of differential equations in (7.4.1) on p. 541 in matrix form as

u′(t) = An×nu(t) with u(0) = c, (7.9.17)

but this time don’t assume that An×n is diagonalizable—suppose instead that
σ (A) = {λ1, λ2, . . . , λs} with index (λi) = ki. The development parallels that
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for the diagonalizable case, but eAt is now a little more complicated than (7.4.2).
Using f(z) = ezt in (7.9.3) and (7.9.2) yields

eAt = P

(
. . .

eJ⋆t

. . .

)
P−1 with eJ⋆t =




eλt teλt
t2eλt

2!
· · ·

tk−1eλt

(k − 1)!

eλt teλt
. . .

...

. . .
. . .

t2eλt

2!

eλt teλt

eλt




, (7.9.18)

while setting f(z) = ezt in (7.9.9) produces

eAt =

s∑

i=1

ki−1∑

j=0

tjeλit

j!
(A− λiI)

jGi. (7.9.19)

Either of these can be used to show that the three properties (7.4.3)–(7.4.5)
on p. 541 still hold. In particular, d eAt/dt = AeAt = eAtA, so, just as in
the diagonalizable case, u(t) = eAtc is the unique solution of (7.9.17) (the
uniqueness argument given in §7.4 remains valid). In the diagonalizable case,
the solution of (7.9.17) involves only the eigenvalues and eigenvectors of A as
described in (7.4.7) on p. 542, but generalized eigenvectors are needed for the
nondiagonalizable case. Using (7.9.19) yields the solution to (7.9.17) as

u(t) = eAtc =

s∑

i=1

ki−1∑

j=0

tjeλit

j!
vj(λi), where vj(λi) = (A− λiI)

jGic. (7.9.20)

Each vki−1(λi) is an eigenvector associated with λi because (A− λiI)
kiGi = 0,

and {vki−2(λi), . . . , v1(λi), v0(λi)} is an associated chain of generalized eigen-
vectors. The behavior of the solution (7.9.20) as t → ∞ is similar but not
identical to that discussed on p. 544 because for λ = x+ iy and t > 0,

tjeλt = tjext (cos yt+ i sin yt)→





0 if x < 0,
unbounded if x ≥ 0 and j > 0,
oscillates indefinitely if x = j = 0 and y �= 0,
1 if x = y = j = 0.

In particular, if Re (λi) < 0 for every λi ∈ σ (A) , then u(t) → 0 for every
initial vector c, in which case the system is said to be stable .

• Nonhomogeneous Systems. It can be verified by direct manipulation
that the solution of u′(t) = Au(t) + f(t) with u(t0) = c is given by

u(t) = eA(t−t0)c+

∫ t

t0

eA(t−τ)f(τ)dτ.
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Example 7.9.7

Nondiagonalizable Mixing Problem. To make the point that even simple
problems in nature can be nondiagonalizable, consider three V gallon tanks as
shown in Figure 7.9.1 that are initially full of polluted water in which the ith

tank contains ci lbs of a pollutant. In an attempt to flush the pollutant out, all
spigots are opened at once allowing fresh water at the rate of r gal/sec to flow
into the top of tank #3, while r gal/sec flow from its bottom into the top of
tank #2, and so on.

r  gal/sec

r  gal/sec

r  gal/sec

r  gal/sec

3

2

1

Fresh

Figure 7.9.1

Problem: How many pounds of the pollutant are in each tank at any finite time
t > 0 when instantaneous and continuous mixing occurs?

Solution: If ui(t) denotes the number of pounds of pollutant in tank i at time
t > 0, then the concentration of pollutant in tank i at time t is ui(t)/V lbs/gal,
so the model u′

i(t) = (lbs/sec) coming in−(lbs/sec) going out produces the non-
diagonalizable system:


u′
1(t)

u′
2(t)

u′
3(t)


=

r

V



−1 1 0

0 −1 1

0 0 −1







u1(t)

u2(t)

u3(t)


, or u′=Au with u(0)=c=




c1
c2
c3


 .

This setup is almost the same as that in Exercise 3.5.11 (p. 104). Notice that

A is simply a scalar multiple of a single Jordan block J⋆ =

(−1 1 0
0 −1 1
0 0 −1

)
, so

eAt is easily determined by replacing t by rt/V and λ by −1 in the second
equation of (7.9.18) to produce

eAt = e(rt/V )J⋆ = e−rt/V



1 rt/V (rt/V )

2
/2

0 1 rt/V

0 0 1


 .
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Therefore,

u(t) = eAtc = e−rt/V




c1 + c2(rt/V ) + c3 (rt/V )
2
/2

c2 + c3(rt/V )
c3


 ,

and, just as common sense dictates, the pollutant is never completely flushed
from the tanks in finite time. Only in the limit does each ui → 0, and it’s clear
that the rate at which u1 → 0 is slower than the rate at which u2 → 0, which
in turn is slower than the rate at which u3 → 0.

Example 7.9.8

The Cauchy integral formula is an elegant result from complex analysis
stating that if f : C → C is analytic in and on a simple closed contour Γ ⊂ C
with positive (counterclockwise) orientation, and if ξ0 is interior to Γ, then

f(ξ0) =
1

2πi

∫

Γ

f(ξ)

ξ − ξ0
dξ and f (j)(ξ0) =

j!

2πi

∫

Γ

f(ξ)

(ξ − ξ0)j+1
dξ. (7.9.21)

These formulas produce analogous representations of matrix functions. Suppose
that A ∈ Cn×n with σ (A) = {λ1, λ2, . . . , λs} and index (λi) = ki. For a
complex variable ξ, the resolvent of A ∈ Cn×n is defined to be the matrix

R(ξ) = (ξI−A)−1.

If ξ �∈ σ (A) , then r(z) = (ξ − z)−1 is defined at A with r(A) = R(ξ), so the
spectral resolution theorem (p. 603) can be used to write

R(ξ) =

s∑

i=1

ki−1∑

j=0

r(j)(λi)

j!
(A− λiI)

jGi =

s∑

i=1

ki−1∑

j=0

1

(ξ − λi)j+1
(A− λiI)

jGi.

If σ (A) is in the interior of a simple closed contour Γ, and if the contour
integral of a matrix is defined by entrywise integration, then (7.9.21) produces

1

2πi

∫

Γ

f(ξ)(ξI−A)−1dξ =
1

2πi

∫

Γ

f(ξ)R(ξ)dξ

=
1

2πi

∫

Γ

s∑

i=1

ki−1∑

j=0

f(ξ)

(ξ − λi)j+1
(A− λiI)

jGidξ

=

s∑

i=1

ki−1∑

j=0

[
1

2πi

∫

Γ

f(ξ)

(ξ − λi)j+1
dξ

]
(A− λiI)

jGi

=

s∑

i=1

ki−1∑

j=0

f (j)(λi)

j!
(A− λiI)

jGi = f(A).
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• In other words, if Γ is a simple closed contour containing σ (A) in its
interior, then

f(A) =
1

2πi

∫

Γ

f(ξ)(ξI−A)−1dξ (7.9.22)

whenever f is analytic in and on Γ. Since this formula makes sense for
general linear operators, it is often adopted as a definition for f(A) in more
general settings.

• Furthermore, if Γi is a simple closed contour enclosing λi but excluding all
other eigenvalues of A, then the ith spectral projector is given by

Gi =
1

2πi

∫

Γi

R(ξ)dξ =
1

2πi

∫

Γi

(ξI−A)−1dξ (Exercise 7.9.19).

Exercises for section 7.9

7.9.1. Lake #i in a closed system of three lakes of equal volume V initially
contains ci lbs of a pollutant. If the water in the system is circulated
at rates (gal/sec) as indicated in Figure 7.9.2, find the amount of pollu-
tant in each lake at time t > 0 (assume continuous mixing), and then
determine the pollution in each lake in the long run.

4r

2r

3r

r

2r

#3#2#1

Figure 7.9.2

7.9.2. Suppose that A ∈ Cn×n has eigenvalues λi with index (λi) = ki. Ex-
plain why the ith spectral projector is given by

Gi = fi(A), where fi(z) =
{
1 when z = λi,
0 otherwise.

7.9.3. Explain why each spectral projector Gi can be expressed as a polyno-
mial in A.

7.9.4. If σ (An×n) = {λ1, λ2, . . . , λs} with ki = index (λi), explain why

Ak =

s∑

i=1

ki−1∑

j=0

(
k

j

)
λk−j
i (A− λiI)

jGi.
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7.9.5. With the convention that
(
k
j

)
= 0 for j > k, explain why




λ 1
. . .

. . .

λ




k

m×m

=




λk
(

k

1

)
λk−1

(
k

2

)
λk−2 · · ·

(
k

m−1

)
λk−m+1

λk
(

k

1

)
λk−1

. . .
...

. . .
. . .

(
k

2

)
λk−2

λk
(

k

1

)
λk−1

λk




.

7.9.6. Determine eA for A =

(
6 2 8

−2 2 −2
0 0 2

)
.

7.9.7. For f(z) = 4
√
z − 1, determine f(A) when A =

(
−3 −8 −9
5 11 9

−1 −2 1

)
.

7.9.8. (a) Explain why every nonsingular A ∈ Cn×n has a square root.

(b) Give necessary and sufficient conditions for the existence of
√
A

when A is singular.

7.9.9. Spectral Mapping Property. Prove that if (λ,x) is an eigenpair
for A, then (f(λ),x) is an eigenpair for f(A) whenever f(A) exists.
Does it also follow that alg multA (λ) = alg multf(A) (f(λ))?

7.9.10. Let f be defined at A, and let λ ∈ σ (A) . Give an example or an
explanation of why the following statements are not necessarily true.

(a) f(A) is similar to A.
(b) geo multA (λ) = geo multf(A) (f(λ)) .
(c) indexA(λ) = indexf(A)(f(λ)).

7.9.11. Explain why Af(A) = f(A)A whenever f(A) exists.

7.9.12. Explain why a function f is defined at A ∈ Cn×n if and only if f

is defined at AT , and then prove that f(AT ) =
[
f(A)

]T
. Why can’t

(⋆)∗ be used in place of (⋆)T ?
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7.9.13. Use the technique of Example 7.9.5 (p. 608) to establish the following
identities.

(a) eAe−A = I for all A ∈ Cn×n.
(b) eαA =

(
eA
)α

for all α ∈ C and A ∈ Cn×n.
(c) eiA = cosA+ i sinA for all A ∈ Cn×n.

7.9.14. (a) Show that if AB = BA, then eA+B = eAeB.

(b) Give an example to show that eA+B �= eAeB in general.

7.9.15. Find the Hermite interpolation polynomial p(z) as described in Exam-

ple 7.9.4 such that p(A) = eA for A =

(
3 2 1

−3 −2 −1
−3 −2 −1

)
.

7.9.16. The Cayley–Hamilton theorem (pp. 509, 532) says that every A ∈ Cn×n

satisfies its own characteristic equation, and this guarantees that An+j

(j = 0, 1, 2, . . .) can be expressed as a polynomial in A of at most
degree n − 1. Since f(A) is always a polynomial in A, the Cayley–
Hamilton theorem insures that f(A) can be expressed as a polynomial
in A of at most degree n − 1. Such a polynomial can be determined
whenever f (j)(λi), j = 0, 1, . . . , ai − 1 exists for each λi ∈ σ (A) ,
where ai = alg mult (λi) . The strategy is the same as that in Example
7.9.4 except that ai is used in place of ki . If we can find a polynomial
p(z) = α0 + α1z + · · ·+ αn−1z

n−1 such that for each λi ∈ σ (A) ,

p(λi) = f(λi), p′(λi) = f ′(λi), . . . , p(ai−1)(λi) = f (ai−1)(λi),

then p(A) = f(A). Why? These equations are an n× n linear system
with the αi ’s as the unknowns, and, for the same reason outlined in
Example 7.9.4, a solution is always possible.

(a) What advantages and disadvantages does this approach have
with respect to the approach in Example 7.9.4?

(b) Use this method to find a polynomial p(z) such that p(A) = eA

for A =

(
3 2 1

−3 −2 −1
−3 −2 −1

)
. Compare with Exercise 7.9.15.

7.9.17. Show that if f is a function defined at

A =




α β γ
0 α β
0 0 α


 = αI+ βN+ γN2, where N =



0 1 0
0 0 1
0 0 0


 ,

then f(A) = f(α)I+ βf ′(α)N+
[
γf ′(α) +

β2f ′′(α)
2!

]
N2.
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7.9.18. Composition of Matrix Functions. If h(z) = f(g(z)), where f
and g are functions such that g(A) and f

(
g(A)

)
each exist, then

h(A) = f
(
g(A)

)
. However, it’s not legal to prove this simply by saying

“replace z by A.” One way to prove that h(A) = f
(
g(A)

)
is to

demonstrate that h(J⋆) = f
(
g(J⋆)

)
for a generic Jordan block and then

invoke (7.9.3). Do this for a 3× 3 Jordan block—the generalization to
k × k blocks is similar. That is, let h(z) = f(g(z)), and use Exercise
7.9.17 to prove that if g(J⋆) and f

(
g(J⋆)

)
each exist, then

h(J⋆) = f
(
g(J⋆)

)
for J⋆ =




λ 1 0
0 λ 1
0 0 λ


 .

7.9.19. Prove that if Γi is a simple closed contour enclosing λi ∈ σ (A) but
excluding all other eigenvalues of A, then the ith spectral projector is

Gi =
1

2πi

∫

Γi

(ξI−A)−1dξ =
1

2πi

∫

Γi

R(ξ)dξ.

7.9.20. For f(z) = z−1, verify that f(A) = A−1 for every nonsingular A.

7.9.21. If Γ is a simple closed contour enclosing all eigenvalues of a nonsingular

matrix A, what is the value of
1

2πi

∫

Γ

ξ−1(ξI−A)−1dξ ?

7.9.22. Generalized Inverses. The inverse function f(z) = z−1 is not de-
fined at singular matrices, but the generalized inverse function

g(z) =

{
z−1 if z �= 0,
0 if z = 0,

is defined on all square matrices. It’s clear from Exercise 7.9.20 that
if A is nonsingular, then g(A) = A−1, so g(A) is a natural way to
extend the concept of inversion to include singular matrices. Explain why
g(A) = AD is the Drazin inverse of Example 5.10.5 (p. 399) and not
necessarily the Moore–Penrose pseudoinverse A† described on p. 423.

7.9.23. Drazin Is “Natural.” Suppose that A is a singular matrix, and let
Γ be a simple closed contour that contains all eigenvalues of A except
λ1 = 0, which is neither in nor on Γ. Prove that

1

2πi

∫

Γ

ξ−1(ξI−A)−1dξ = AD

is the Drazin inverse for A as defined in Example 5.10.5 (p. 399). Hint:
The Cauchy–Goursat theorem states that if a function f is analytic at
all points inside and on a simple closed contour Γ, then

∫
Γ
f(z)dz = 0.
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7.10 DIFFERENCE EQUATIONS, LIMITS, AND SUMMABILITY

A linear difference equation of order m with constant coefficients has the form

y(k + 1) = αmy(k) + αm−1y(k − 1) · · ·+ α1y(k −m+ 1) + α0 (7.10.1)

in which α0, α1, . . . , αm along with initial conditions y(0), y(1), . . . , y(m − 1)
are known constants, and y(m), y(m+ 1), y(m+ 2) . . . are unknown. Difference
equations are the discrete analogs of differential equations, and, among other
ways, they arise by discretizing differential equations. For example, discretizing
a second-order linear differential equation results in a system of second-order
difference equations as illustrated in Example 1.4.1, p 19. The theory of linear
difference equations parallels the theory for linear differential equations, and
a technique similar to the one used to solve linear differential equations with
constant coefficients produces the solution of (7.10.1) as

y(k) =
α0

1− α1 − · · · − αm
+

m∑

i=1

βiλ
k
i , for k = 0, 1, . . . (7.10.2)

in which the λi ’s are the roots of λm − αmλm−1 − · · · − α0 = 0, and the βi ’s
are constants determined by the initial conditions y(0), y(1), . . . , y(m− 1). The
first term on the right-hand side of (7.10.2) is a particular solution of (7.10.1),
and the summation term in (7.10.2) is the general solution of the associated
homogeneous equation defined by setting α0 = 0.

This section focuses on systems of first-order linear difference equations with
constant coefficients, and such systems can be written in matrix form as

x(k + 1) = Ax(k) (a homogeneous system)
or

x(k + 1) = Ax(k) + b(k) (a nonhomogeneous system),
(7.10.3)

where matrix An×n, the initial vector x(0), and vectors b(k), k = 0, 1, . . . , are
known. The problem is to determine the unknown vectors x(k), k = 1, 2, . . . ,
along with an expression for the limiting vector limk→∞ x(k). Such systems are
used to model linear discrete-time evolutionary processes, and the goal is usually
to predict how (or to where) the process eventually evolves given the initial state
of the process. For example, the population migration problem in Example 7.3.5
(p. 531) produces a 2× 2 system of homogeneous linear difference equations
(7.3.14), and the long-run (or steady-state) population distribution is obtained
by finding the limiting solution. More sophisticated applications are given in
Example 7.10.8 (p. 635) and Example 8.3.7 (p. 683).
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Solving the equations in (7.10.3) is easy. Direct substitution verifies that

x(k) = Akx(0) for k = 1, 2, 3, . . .
and (7.10.4)

x(k) = Akx(0) +

k−1∑

j=0

Ak−j−1b(j) for k = 1, 2, 3, . . .

are respective solutions to (7.10.3). So rather than finding x(k) for any fi-
nite k, the real problem is to understand the nature of the limiting solution
limk→∞ x(k), and this boils down to analyzing limk→∞Ak. We begin this anal-
ysis by establishing conditions under which Ak → 0.

For scalars α we know that αk → 0 if and only if |α| < 1, so it’s natural
to ask if there is an analogous statement for matrices. The first inclination is to
replace | ⋆ | by a matrix norm ‖ ⋆ ‖, but this doesn’t work for the standard

norms. For example, if A =
(
0 2
0 0

)
, then Ak → 0 but ‖A‖ = 2 for all of the

standard matrix norms. Although it’s possible to construct a rather goofy-looking
matrix norm ‖ ⋆ ‖g such that ‖A‖g < 1 when limk→∞Ak = 0, the underlying
mechanisms governing convergence to zero are better understood and analyzed
by using eigenvalues and the Jordan form rather than norms. In particular, the
spectral radius of A defined as ρ(A) = maxλ∈σ(A) |λ| (Example 7.1.4, p. 497)
plays a central role.

Convergence to Zero
For A ∈ Cn×n, lim

k→∞
Ak = 0 if and only if ρ(A) < 1. (7.10.5)

Proof. If P−1AP = J is the Jordan form for A, then

Ak = PJkP−1 = P



. . .

Jk
⋆

. . .


P−1, where J⋆ =




λ 1
. . .

. . .

λ


 (7.10.6)

denotes a generic Jordan block in J. Clearly, Ak → 0 if and only if Jk⋆ → 0
for each Jordan block, so it suffices to prove that Jk⋆ → 0 if and only if |λ| <
1. Using the function f(z) = zn in formula (7.9.2) on p. 600 along with the
convention that

(
k
j

)
= 0 for j > k produces
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Jk⋆ =




λk
(

k

1

)
λk−1

(
k

2

)
λk−2 · · ·

(
k

m−1

)
λk−m+1

λk
(

k

1

)
λk−1

. . .
.
.
.

. . .
. . .

(
k

2

)
λk−2

λk
(

k

1

)
λk−1

λk




m×m

. (7.10.7)

It’s clear from the diagonal entries that if Jk⋆ → 0, then λk → 0, so |λ| < 1.
Conversely, if |λ| < 1 then limk→∞

(
k
j

)
λk−j = 0 for each fixed value of j

because
(
k

j

)
=

k(k − 1) · · · (k − j + 1)

j!
≤ kj

j!
=⇒

∣∣∣∣
(
k

j

)
λk−j

∣∣∣∣ ≤
kj

j!
|λ|k−j → 0.

You can see that the last term on the right-hand side goes to zero as k →∞
either by applying l’Hopital’s rule or by realizing that kj goes to infinity with
polynomial speed while |λ|k−j is going to zero with exponential speed. There-
fore, if |λ| < 1, then Jk⋆ → 0, and thus (7.10.5) is proven.

Intimately related to the question of convergence to zero is the convergence
of the Neumann series

∑∞
k=0A

k. It was demonstrated in (3.8.5) on p. 126
that if limn→∞An = 0, then the Neumann series converges, and it was argued
in Example 7.3.1 (p. 527) that the converse holds for diagonalizable matrices.
Now we are in a position to prove that the converse is true for all square matrices
and thereby produce the following complete statement regarding the convergence
of the Neumann series.

Neumann Series
For A ∈ Cn×n, the following statements are equivalent.

• The Neumann series I+A+A2 + · · · converges. (7.10.8)

• ρ(A) < 1. (7.10.9)

• lim
k→∞

Ak = 0. (7.10.10)

In which case, (I−A)−1 exists and
∑∞

k=0A
k = (I−A)−1. (7.10.11)

Proof. We know from (7.10.5) that (7.10.9) and (7.10.10) are equivalent, and it
was argued on p. 126 that (7.10.10) implies (7.10.8), so the theorem can be estab-
lished by proving that (7.10.8) implies (7.10.9). If

∑∞
k=0A

k converges, it follows
that

∑∞
k=0 J

k
∗ must converge for each Jordan block J∗ in the Jordan form for A.

This together with (7.10.7) implies that
[∑∞

k=0 J
k
∗
]
ii
=
∑∞

k=0 λ
k converges for



7.10 Difference Equations, Limits, and Summability 619

each λ ∈ σ (A) , and this scalar geometric series converges if and only if |λ| < 1.
Thus the convergence of

∑∞
k=0A

k implies ρ(A) < 1. When it converges,∑∞
k=0A

k = (I−A)−1 because (I−A)(I+A+A2 + · · ·+Ak−1) = I−Ak →
I as k →∞.

The following examples illustrate the utility of the previous results for es-
tablishing some useful (and elegant) statements concerning spectral radius.

Example 7.10.1

Spectral Radius as a Limit. It was shown in Example 7.1.4 (p. 497) that
if A ∈ Cn×n, then ρ (A) ≤ ‖A‖ for every matrix norm. But this was just the
precursor to the following elegant relationship between spectral radius and norm.

Problem: Prove that for every matrix norm,

ρ(A) = lim
k→∞

∥∥Ak
∥∥1/k

. (7.10.12)

Solution: First note that ρ (A)
k
= ρ

(
Ak
)
≤
∥∥Ak

∥∥ =⇒ ρ (A) ≤
∥∥Ak

∥∥1/k
.

Next, observe that ρ
(
A/(ρ (A) + ǫ)

)
< 1 for every ǫ > 0, so, by (7.10.5),

lim
k→∞

(
A

ρ (A) + ǫ

)k

= 0 =⇒ lim
k→∞

∥∥Ak
∥∥

(ρ (A) + ǫ)k
= 0.

Consequently, there is a positive integer Kǫ such that
∥∥Ak

∥∥ /(ρ (A) + ǫ)k < 1

for all k ≥ Kǫ, so
∥∥Ak

∥∥1/k
< ρ (A) + ǫ for all k ≥ Kǫ, and thus

ρ (A) ≤
∥∥Ak

∥∥1/k
< ρ (A) + ǫ for k ≥ Kǫ.

Because this holds for each ǫ > 0, it follows that limk→∞
∥∥Ak

∥∥1/k
= ρ(A).

Example 7.10.2

For A ∈ Cn×n let |A| denote the matrix having entries |aij |, and for matrices
B,C ∈ ℜn×n define B ≤ C to mean bij ≤ cij for each i and j.

Problem: Prove that if |A| ≤ B, then

ρ (A) ≤ ρ (|A|) ≤ ρ (B) . (7.10.13)

Solution: The triangle inequality yields |Ak| ≤ |A|k for every positive integer
k. Furthermore, |A| ≤ B implies that |A|k ≤ Bk. This with (7.10.12) produces

∥∥Ak
∥∥
∞ =

∥∥ |Ak|
∥∥
∞ ≤

∥∥ |A|k
∥∥
∞ ≤

∥∥Bk
∥∥
∞

=⇒
∥∥Ak

∥∥1/k

∞ ≤
∥∥ |A|k

∥∥1/k

∞ ≤
∥∥Bk

∥∥1/k

∞

=⇒ lim
k→∞

∥∥Ak
∥∥1/k

∞ ≤ lim
k→∞

≤
∥∥ |A|k

∥∥1/k

∞ ≤ lim
k→∞

≤
∥∥Bk

∥∥1/k

∞

=⇒ ρ (A) ≤ ρ (|A|) ≤ ρ (B) .
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Example 7.10.3

Problem: Prove that if 0 ≤ Bn×n, then

ρ (B) < r if and only if (rI−B)−1 exists and (rI−B)−1 ≥ 0. (7.10.14)

Solution: If ρ (B) < r, then ρ(B/r) < 1, so (7.10.8)–(7.10.11) imply that

rI−B = r
(
I− B

r

)
is nonsingular and (rI−B)−1 =

1

r

∞∑

k=0

(B
r

)k
≥ 0.

To prove the converse, it’s convenient to adopt the following notation. For any
P ∈ ℜm×n, let |P| =

[
|pij |

]
denote the matrix of absolute values, and notice

that the triangle inequality insures that |PQ| ≤ |P| |Q| for all conformable P
and Q. Now assume that rI−B is nonsingular and (rI−B)−1 ≥ 0, and prove
ρ (B) < r. Let (λ,x) be any eigenpair for B, and use B ≥ 0 together with
(rI−B)−1 ≥ 0 to write

λx = Bx =⇒ |λ| |x| = |λx| = |Bx| ≤ |B| |x| = B |x|
=⇒ (rI−B)|x| ≤ (r − |λ|) |x|
=⇒ 0 ≤ |x| ≤ (r − |λ|) (rI−B)−1|x| (7.10.15)

=⇒ r − |λ| ≥ 0.

But |λ| �= r; otherwise (7.10.15) would imply that |x| (and hence x) is zero,
which is impossible. Thus |λ| < r for all λ ∈ σ (B) , which means ρ (B) < r.

Iterative algorithms are often used in lieu of direct methods to solve large
sparse systems of linear equations, and some of the traditional iterative schemes
fall into the following class of nonhomogeneous linear difference equations.

Linear Stationary Iterations
Let Ax = b be a linear system that is square but otherwise arbitrary.

• A splitting of A is a factorization A =M−N, where M−1 exists.

• Let H =M−1N (called the iteration matrix), and set d =M−1b.

• For an initial vector x(0)n×1, a linear stationary iteration is

x(k) = Hx(k − 1) + d, k = 1, 2, 3, . . . . (7.10.16)

• If ρ(H) < 1, then A is nonsingular and

lim
k→∞

x(k) = x = A−1b for every initial vector x(0). (7.10.17)



7.10 Difference Equations, Limits, and Summability 621

Proof. To prove (7.10.17), notice that if A =M−N =M(I−H) is a splitting
for which ρ(H) < 1, then (7.10.11) guarantees that (I−H)−1 exists, and thus
A is nonsingular. Successive substitution applied to (7.10.16) yields

x(k) = Hkx(0) + (I+H+H2 + · · ·+Hk−1)d,

so if ρ(H) < 1, then (7.10.9)–(7.10.11) insures that for all x(0),

lim
k→∞

x(k) = (I−H)−1d = (I−H)−1M−1b = A−1b = x. (7.10.18)

It’s clear that the convergence rate of (7.10.16) is governed by the size
of ρ(H) along with the index of its associated eigenvalue (go back and look
at (7.10.7)). But what really is needed is an indication of how many digits of
accuracy can be expected to be gained per iteration. So as not to obscure the
simple underlying idea, assume that Hn×n is diagonalizable with

σ (H) = {λ1, λ2, . . . , λs} , where 1 > |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λs|

(which is frequently the case in applications), and let ǫ(k) = x(k) − x denote
the error after the kth iteration. Subtracting x = Hx + d (a consequence of
(7.10.18)) from x(k) = Hx(k − 1) + d produces (for large k)

ǫ(k) = Hǫ(k − 1) = Hkǫ(0) = (λk1G1 + λk2G2 + · · ·+ λksGs)ǫ(0) ≈ λk1G1ǫ(0),

where the Gi ’s are the spectral projectors occurring in the spectral decomposi-
tion (pp. 517 and 520) of Hk. Similarly, ǫ(k− 1) ≈ λk−1

1 G1ǫ(0), so comparing
the ith components of ǫ(k − 1) and ǫ(k) reveals that after several iterations,

∣∣∣∣
ǫi(k − 1)

ǫi(k)

∣∣∣∣ ≈
1

|λ1|
=

1

ρ (H)
for each i = 1, 2, . . . , n.

To understand the significance of this, suppose for example that

|ǫi(k − 1)| = 10−q and |ǫi(k)| = 10−p with p ≥ q > 0,

so that the error in each entry is reduced by p− q digits per iteration. Since

p− q = log10

∣∣∣∣
ǫi(k − 1)

ǫi(k)

∣∣∣∣ ≈ − log10 ρ (H) ,

we see that − log10 ρ (H) provides us with an indication of the number of digits
of accuracy that can be expected to be eventually gained on each iteration. For
this reason, the number R = − log10 ρ (H) (or, alternately, R = − ln ρ (H)) is
called the asymptotic rate of convergence, and this is the primary tool for
comparing different linear stationary iterative algorithms.

The trick is to find splittings that guarantee rapid convergence while insuring
that H =M−1N and d =M−1b can be computed easily. The following three
examples present the classical splittings.
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Example 7.10.4

Jacobi’s method
81
is produced by splitting A = D − N, where D is the

diagonal part of A (we assume each aii �= 0 ), and −N is the matrix containing
the off-diagonal entries of A. Clearly, both H = D−1N and d = D−1b can be
formed with little effort. Notice that the ith component in the Jacobi iteration
x(k) = D−1Nx(k − 1) +D−1b is given by

xi(k) =
(
bi −

∑
j 	=i aijxj(k − 1)

)
/aii. (7.10.19)

This shows that the order in which the equations are considered is irrelevant
and that the algorithm can process equations independently (or in parallel).
For this reason, Jacobi’s method was referred to in the 1940s as the method of

simultaneous displacements.

Problem: Explain why Jacobi’s method is guaranteed to converge for all initial
vectors x(0) and for all right-hand sides b when A is diagonally dominant as
defined and discussed in Examples 4.3.3 (p. 184) and 7.1.6 (p. 499).

Solution: According to (7.10.17), it suffices to show that ρ(H) < 1. This follows
by combining |aii| >

∑
j 	=i |aij | for each i with the fact that ρ(H) ≤ ‖H‖∞

(Example 7.1.4, p. 497) to write

ρ(H) ≤ ‖H‖∞ = max
i

∑

j

|aij |
|aii|

= max
i

∑

j 	=i

|aij |
|aii|

< 1.

Example 7.10.5

The Gauss–Seidel method
82
is the result of splitting A = (D−L)−U, where

D is the diagonal part of A (aii �= 0 is assumed) and where −L and −U
contain the entries occurring below and above the diagonal of A, respectively.
The iteration matrix is H = (D−L)−1U, and d = (D−L)−1b. The ith entry
in the Gauss–Seidel iteration x(k) = (D− L)−1Ux(k − 1) + (D− L)−1b is

xi(k) =
(
bi −

∑
j<i aijxj(k)−

∑
j>i aijxj(k − 1)

)
/aii. (7.10.20)

This shows that Gauss–Seidel determines xi(k) by using the newest possible
information—namely, x1(k), x2(k), . . . , xi−1(k) in the current iterate in con-
junction with xi+1(k − 1), xi+2(k − 1), . . . , xn(k − 1) from the previous iterate.

81
Karl Jacobi (p. 353) considered this method in 1845, but it seems to have been independently
discovered by others. In addition to being called the method of simultaneous displacements in
1945, Jacobi’s method was referred to as the Richardson iterative method in 1958.

82
Ludwig Philipp von Seidel (1821–1896) studied with Dirichlet in Berlin in 1840 and with
Jacobi (and others) in Königsberg. Seidel’s involvement in transforming Jacobi’s method into
the Gauss–Seidel scheme is natural, but the reason for attaching Gauss’s name is unclear.
Seidel went on to earn his doctorate (1846) in Munich, where he stayed as a professor for the
rest of his life. In addition to mathematics, Seidel made notable contributions in the areas of
optics and astronomy, and in 1970 a lunar crater was named for Seidel.
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This differs from Jacobi’s method because Jacobi relies strictly on the old data
in x(k− 1). The Gauss–Seidel algorithm was known in the 1940s as the method

of successive displacements (as opposed to the method of simultaneous displace-

ments, which is Jacobi’s method). Because Gauss–Seidel computes xi(k) with
newer data than that used by Jacobi, it appears at first glance that Gauss–Seidel
should be the superior algorithm. While this is often the case, it is not universally
true—see Exercise 7.10.7.

Other Comparisons. Another major difference between Gauss–Seidel and Ja-
cobi is that the order in which the equations are processed is irrelevant for Ja-
cobi’s method, but the value (not just the position) of the components xi(k) in
the Gauss–Seidel iterate can change when the order of the equations is changed.
Since this ordering feature can affect the performance of the algorithm, it was the
object of much study at one time. Furthermore, when core memory is a concern,
Gauss–Seidel enjoys an advantage because as soon as a new component xi(k) is
computed, it can immediately replace the old value xi(k − 1), whereas Jacobi
requires all old values in x(k − 1) to be retained until all new values in x(k)
have been determined. Something that both algorithms have in common is that
diagonal dominance in A guarantees global convergence of each method.

Problem: Explain why diagonal dominance in A is sufficient to guarantee
convergence of the Gauss–Seidel method for all initial vectors x(0) and for all
right-hand sides b .

Solution: Show ρ (H) < 1. Let (λ, z) be any eigenpair for H, and suppose
that the component of maximal magnitude in z occurs in position m. Write
(D− L)−1Uz = λz as λ(D− L)z = Uz, and write the mth row of this latter
equation as λ(d− l) = u, where

d = ammzm, l = −
∑

j<m

amjzj , and u = −
∑

j>m

amjzj .

Diagonal dominance |amm| >
∑

j 	=m |amj | and |zj | ≤ |zm| for all j yields

|u|+ |l| =
∣∣∣
∑

j<m

amjzj

∣∣∣+
∣∣∣
∑

j>m

amjzj

∣∣∣ ≤ |zm|
(∑

j<m

|amj |+
∑

j>m

|amj |
)

< |zm||amm| = |d| =⇒ |u| < |d| − |l|.

This together with λ(d− l) = u and the backward triangle inequality (Example
5.1.1, p. 273) produces the conclusion that

|λ| = |u|
|d− l| ≤

|u|
|d| − |l| < 1, and thus ρ(H) < 1.

Note: Diagonal dominance in A guarantees convergence for both Jacobi and
Gauss–Seidel, but diagonal dominance is a rather severe condition that is often
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not present in applications. For example the linear system in Example 7.6.2
(p. 563) that results from discretizing Laplace’s equation on a square is not
diagonally dominant (e.g., look at the fifth row in the 9× 9 system on p. 564).
But such systems are always positive definite (Example 7.6.2), and there is a
classical theorem stating that if A is positive definite, then the Gauss–Seidel

iteration converges to the solution of Ax = b for every initial vector x(0). The
same cannot be said for Jacobi’s method, but there are matrices (theM-matrices

of Example 7.10.7, p. 626) having properties resembling positive definiteness for
which Jacobi’s method is guaranteed to converge—see (7.10.29).

Example 7.10.6

The successive overrelaxation (SOR) method improves on Gauss–Seidel
by introducing a real number ω �= 0, called a relaxation parameter, to form
the splitting A =M−N, where M = ω−1D− L and N = (ω−1 − 1)D+U.
As before, D is the diagonal part of A ( aii �= 0 is assumed) and −L and −U
contain the entries occurring below and above the diagonal of A, respectively.
Since M−1 = ω(D− ωL)−1 = ω(I− ωD−1L)−1, the SOR iteration matrix is

Hω=M
−1N=(D−ωL)−1

[
(1−ω)D+ωU

]
=(I−ωD−1L)−1

[
(1−ω)I+ωD−1U

]
,

and the kth SOR iterate emanating from (7.10.16) is

x(k) = Hωx(k − 1) + ω(I− ωD−1L)−1D−1b. (7.10.21)

This is the Gauss–Seidel iteration when ω = 1. Using ω > 1 is called overrelax-

ation, while taking ω < 1 is referred to as underrelaxation. Writing (7.10.21) in
the form (I− ωD−1L)x(k) =

[
(1− ω)I+ ωD−1U

]
x(k − 1) + ωD−1b and con-

sidering the ith component on both sides of this equality produces

xi(k) = (1− ω)xi(k − 1) +
ω

aii

(
bi −

∑

j<i

aijxj(k)−
∑

j>i

aijxj(k − 1)
)
. (7.10.22)

The matrix splitting approach is elegant and unifying, but it obscures the simple
idea behind SOR. To understand the original motivation, write the Gauss–Seidel
iterate in (7.10.20) as x̃i(k) = x̃i(k− 1)+ ck, where ck is the “correction term”

ck =
1

aii

(
bi −

∑

j<i

aij x̃j(k)−
n∑

j=i

aij x̃j(k − 1)
)
.

This clearly suggests that the performance of the iteration can be affected by
adjusting (or “relaxing”) the correction term—i.e., by replacing ck with ωck.
The resulting algorithm, x̃i(k) = x̃i(k − 1) + ωck, is in fact (7.10.22), which
produces (7.10.21). Moreover, it was observed early on that Gauss–Seidel applied
to finite difference approximations for elliptic partial differential equations, such
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as the one in Example 7.6.2 (p. 563), often produces successive corrections ck
that have the same sign, so it was reasoned that convergence might be accelerated
for these applications by increasing the magnitude of the correction factor at each
step (i.e., by setting ω > 1). Thus the technique became known as “successive
overrelaxation” rather than simply “successive relaxation.” It’s not hard to see
that ρ (Hω) < 1 only if 0 < ω < 2 (Exercise 7.10.9), and it can be proven
that positive definiteness of A is sufficient to guarantee ρ (Hω) < 1 whenever
0 < ω < 2. But determining ω to minimize ρ (Hω) is generally a difficult task.

Nevertheless, there is one famous special case
83
for which the optimal value

of ω can be explicitly given. If det (αD− L−U) = det
(
αD− βL− β−1U

)
for

all real α and β �= 0, and if the iteration matrix HJ for Jacobi’s method has
real eigenvalues with ρ (HJ) < 1, then the eigenvalues λJ for HJ are related
to the eigenvalues λω of Hω by

(λω + ω − 1)2 = ω2λ2
Jλω. (7.10.23)

From this it can be proven that the optimum value of ω for SOR is

ωopt =
2

1 +
√
1− ρ2(HJ)

and ρ
(
Hωopt

)
= ωopt − 1. (7.10.24)

Furthermore, setting ω = 1 in (7.10.23) yields ρ (HGS) = ρ2(HJ), where HGS

is the Gauss–Seidel iteration matrix. For example, the discrete Laplacian Ln2×n2

in Example 7.6.2 (p. 563) satisfies the special case conditions, and the spectral
radii of the iteration matrices associated with L are

Jacobi: ρ (HJ) = cosπh ≈ 1− (π2h2/2) (see Exercise 7.10.10),
Gauss–Seidel: ρ (HGS) = cos2 πh ≈ 1− π2h2,

SOR: ρ
(
Hωopt

)
=

1− sinπh

1 + sinπh
≈ 1− 2πh,

where we have set h = 1/(n+ 1). Examining asymptotic rates of convergence
reveals that Gauss–Seidel is twice as fast as Jacobi on the discrete Laplacian
because RGS = − log10 cos

2 πh = −2 log10 cosπh = 2RJ . However, optimal
SOR is much better because 1− 2πh is significantly smaller than 1− π2h2 for
even moderately small h. The point is driven home by looking at the asymptotic
rates of convergence for h = .02 (n = 49) as shown below:

Jacobi: RJ ≈ .000858,
Gauss–Seidel: RGS = 2RJ ≈ .001716,

SOR: Ropt ≈ .054611 ≈ 32RGS = 64RJ .

83
This special case was developed by the contemporary numerical analyst David M. Young, Jr.,
who produced much of the SOR theory in his 1950 Ph.D. dissertation that was directed by
Garrett Birkhoff at Harvard University. The development of SOR is considered to be one of the
major computational achievements of the first half of the twentieth century, and it motivated
at least two decades of intense effort in matrix computations.
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In other words, after things settle down, a single SOR step on L (for h = .02)
is equivalent to about 32 Gauss–Seidel steps and 64 Jacobi steps!

Note: In spite of the preceding remarks, SOR has limitations. Special cases
for which the optimum ω can be explicitly determined are rare, so adaptive
computational procedures are generally necessary to approximate a good ω, and
the results are often not satisfying. While SOR was a big step forward over the
algorithms of the nineteenth century, the second half of the twentieth century saw
the development of more robust methods—such as the preconditioned conjugate
gradient method (p. 657) and GMRES (p. 655)—that have relegated SOR to a
secondary role.

Example 7.10.7

M-matrices
84
are real nonsingular matrices An×n such that aij ≤ 0 for all

i �= j and A−1 ≥ 0 (each entry of A−1 is nonnegative). They arise naturally in
a broad variety of applications ranging from economics (Example 8.3.6, p. 681)
to hard-core engineering problems, and, as shown in (7.10.29), they are partic-
ularly relevant in formulating and analyzing iterative methods. Some important
properties of M-matrices are developed below.

• A is an M-matrix if and only if there exists a matrix B ≥ 0 and a real
number r > ρ(B) such that A = rI−B. (7.10.25)

• If A is an M-matrix, then Re (λ) > 0 for all λ ∈ σ (A) . Conversely, all
matrices with nonpositive off-diagonal entries whose spectrums are in the
right-hand halfplane are M-matrices. (7.10.26)

• Principal submatrices of M-matrices are also M-matrices. (7.10.27)

• If A is an M-matrix, then all principal minors in A are positive. Conversely,
all matrices with nonpositive off-diagonal entries whose principal minors are
positive are M-matrices. (7.10.28)

• If A =M−N is a splitting of an M-matrix for which M−1 ≥ 0, then the
linear stationary iteration (7.10.16) is convergent for all initial vectors x(0)
and for all right-hand sides b. In particular, Jacobi’s method in Example
7.10.4 (p. 622) converges for all M-matrices. (7.10.29)

Proof of (7.10.25). Suppose that A is an M-matrix, and let r = maxi |aii| so
that B = rI −A ≥ 0. Since A−1 = (rI−B)−1 ≥ 0, it follows from (7.10.14)
in Example 7.10.3 (p. 620) that r > ρ(B). Conversely, if A is any matrix of

84
This terminology was introduced in 1937 by the twentieth-century mathematician Alexan-
der Markowic Ostrowski, who made several contributions to the analysis of classical iterative
methods. The “M” is short for “Minkowski” (p. 278).
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the form A = rI−B, where B ≥ 0 and r > ρ (B) , then (7.10.14) guarantees
that A−1 exists and A−1 ≥ 0, and it’s clear that aij ≤ 0 for each i �= j, so
A must be an M-matrix.

Proof of (7.10.26). If A is an M-matrix, then, by (7.10.25), A = rI − B,
where r > ρ (B) . This means that if λA ∈ σ (A) , then λA = r− λB for some

λB ∈ σ (B) . If λB = α + iβ, then r > ρ (B) ≥ |λB| =
√

α2 + β2 ≥ |α| ≥ α
implies that Re (λA) = r−α ≥ 0. Now suppose that A is any matrix such that
aij ≤ 0 for all i �= j and Re (λA) > 0 for all λA ∈ σ (A) . This means that
there is a real number γ such that the circle centered at γ and having radius
equal to γ contains σ (A)—see Figure 7.10.1. Let r be any real number such
that r > max{2γ, maxi |aii|}, and set B = rI−A. It’s apparent that B ≥ 0,
and, as can be seen from Figure 7.10.1, the distance |r − λA| between r and
every point in σ (A) is less than r.

σ(A) r

γ

x

iy

Figure 7.10.1

All eigenvalues of B look like λB = r − λA, and |λB| = |r − λA| < r, so
ρ (B) < r. Since A = rI−B is nonsingular (because 0 /∈ σ (A) ) with B ≥ 0
and r > ρ (B) , it follows from (7.10.14) in Example 7.10.3 (p. 620) that
A−1 ≥ 0, and thus A is an M-matrix.

Proof of (7.10.27). If Ãk×k is the principal submatrix lying on the intersection
of rows and columns i1, . . . , ik in an M-matrix A = rI−B, where B ≥ 0 and
r > ρ (B) , then Ã = rI − B̃, where B̃ ≥ 0 is the corresponding principal
submatrix of B. Let P be a permutation matrix such that

PTBP =

(
B̃ X
Y Z

)
, or B = P

(
B̃ X
Y Z

)
PT , and let C = P

(
B̃ 0
0 0

)
PT .

Clearly, 0 ≤ C ≤ B, so, by (7.10.13) on p. 619, ρ(B̃) = ρ (C) ≤ ρ (B) < r.

Consequently, (7.10.2 ) insures that Ã is an M-matrix.

Proof of (7.10.28). If A is an M-matrix, then det (A) > 0 because the eigenval-
ues of a real matrix appear in complex conjugate pairs, so (7.10.26) and (7.1.8),
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p. 494, guarantee that det (A) =
∏n

i=1 λi > 0. It follows that each principal
minor is positive because each submatrix of an M-matrix is again an M-matrix.
Now prove that if An×n is a matrix such that aij ≤ 0 for i �= j and each prin-
cipal minor is positive, then A must be an M-matrix. Proceed by induction on
n. For n = 1, the assumption of positive principal minors implies that A = [ρ]
with ρ > 0, so A−1 = 1/ρ > 0. Suppose the result is true for n = k, and
consider the LU factorization

A(k+1)×(k+1) =

(
Ãk×k c

dT α

)
=

(
I 0

dT Ã−1 1

)(
Ã c

0 α− dT Ã−1c

)
= LU.

We know that A is nonsingular (det (A) is a principal minor) and α > 0 (it’s

a 1× 1 principal minor), and the induction hypothesis insures that Ã−1 ≥ 0.
Combining these facts with c ≤ 0 and dT ≤ 0 produces

A−1 = U−1L−1 =




Ã−1 −Ã−1c

α− dT Ã−1c

0
1

α− dT Ã−1c




(
I 0

−dT Ã−1 1

)
≥ 0,

and thus the induction argument is completed.

Proof of (7.10.29). If A =M−N is an M-matrix, and if M−1 ≥ 0 and N ≥ 0,
then the iteration matrix H =M−1N is clearly nonnegative. Furthermore,

(I−H)−1 − I = (I−H)−1H = A−1N ≥ 0 =⇒ (I−H)−1 ≥ I ≥ 0,

so (7.10.14) in Example 7.10.3 (p. 620) insures that ρ (H) < 1. Convergence of
Jacobi’s method is a special case because the Jacobi splitting is A = D −N,
where D = diag (a11, a22, . . . , ann) , and (7.10.28) implies that each aii > 0.

Note: Comparing properties of M-matrices with those of positive definite ma-
trices reveals many parallels, and, in a rough sense, an M-matrix often plays the
role of “a poor man’s positive definite matrix.” Only a small sample of M-matrix
theory has been presented here, but there is in fact enough to fill a monograph
on the subject. For example, there are at least 50 known equivalent conditions
that can be imposed on a real matrix with nonpositive off-diagonal entries (often
called a Z-matrix) to guarantee that it is an M-matrix—see Exercise 7.10.12 for
a sample of such conditions in addition to those listed above.
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We now focus on broader issues concerning when limk→∞Ak exists but may
be nonzero. Start from the fact that limk→∞Ak exists if and only if limk→∞ Jk⋆
exists for each Jordan block in (7.10.6). It’s clear from (7.10.7) that limk→∞ Jk⋆
cannot exist when |λ| > 1, and we already know the story for |λ| < 1, so we
only have to examine the case when |λ| = 1. If |λ| = 1 with λ �= 1 (i.e., λ = eiθ

with 0 < θ < 2π ), then the diagonal terms λk oscillate indefinitely, and this
prevents Jk⋆ (and Ak ) from having a limit. When λ = 1,

Jk⋆ =




1
(

k

1

)
· · ·

(
k

m−1

)

. . .
. . .

...
. . .

(
k

1

)

1




m×m

(7.10.30)

has a limiting value if and only if m = 1, which is equivalent to saying that
λ = 1 is a semisimple eigenvalue. But λ = 1 may be repeated p times so that
there are p Jordan blocks of the form J⋆ = [1]1×1. Consequently, limk→∞Ak

exists if and only if the Jordan form for A has the structure

J = P−1AP =

(
Ip×p 0
0 K

)
, where p = alg mult (1) and ρ(K) < 1.

(7.10.31)
Now that we know when limk→∞Ak exists, let’s describe what limk→∞Ak

looks like. We already know the answer when p = 0—it’s 0 (because ρ (A) < 1).
But when p is nonzero, limk→∞Ak �= 0, and it can be evaluated in a couple of

different ways. One way is to partition P =
(
P1 |P2

)
and P−1 =

(
Q1

Q2

)
, and

use (7.10.5) and (7.10.31) to write

lim
k→∞

Ak
n×n = lim

k→∞
P

(
Ip×p 0
0 Kk

)
P−1 = P

(
Ip×p 0
0 0

)
P−1

=
(
P1 |P2

)( Ip×p 0
0 0

)(
Q1

Q2

)
= P1Q1 = G.

(7.10.32)

Another way is to use f(z) = zk in the spectral resolution theorem on p. 603. If
σ (A) = {λ1, λ2, . . . , λs} with 1 = λ1 > |λ2| ≥ · · · ≥ |λs|, and if index (λi) = ki,

where k1 = 1, then limk→∞
(
k
j

)
λk−j
i = 0 for i ≥ 2 (see p. 618), and

Ak =

s∑

i=1

ki−1∑

j=0

(
k

j

)
λk−j
i (A− λiI)

jGi

= G1 +

s∑

i=2

ki−1∑

j=0

(
k

j

)
λk−j
i (A− λiI)

jGi → G1 as k →∞.
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In other words, limk→∞Ak = G1 = G is the spectral projector associated
with λ1 = 1. Since index (λ1) = 1, we know from the discussion on p. 603 that
R (G) = N (I−A) and N (G) = R (I−A). Notice that if ρ(A) < 1, then
I−A is nonsingular, and N (I−A) = {0}. So regardless of whether the limit
is zero or nonzero, limk→∞Ak is always the projector onto N (I−A) along
R (I−A). Below is a summary of the above observations.

Limits of Powers
For A ∈ Cn×n, limk→∞Ak exists if and only if

ρ(A) < 1

or else (7.10.33)

ρ(A) = 1, where λ = 1 is the only eigenvalue on the
unit circle, and λ = 1 is semisimple.

When it exists,

lim
k→∞

Ak = the projector onto N (I−A) along R (I−A). (7.10.34)

With each scalar sequence {α1, α2, α3, . . .} there is an associated sequence
of averages {µ1, µ2, µ3, . . .} in which

µ1 = α1, µ2 =
α1 + α2

2
, . . . , µn =

α1 + α2 + · · ·+ αn
n

.

This sequence of averages is called the associatedCesàro sequence,
85

and when
limn→∞ µn = α, we say that {αn} isCesàro summable (or merely summable)
to α. It can be proven (Exercise 7.10.11) that if {αn} converges to α, then
{µn} converges to α, but not conversely. In other words, convergence implies
summability, but summability doesn’t insure convergence. To see that a sequence
can be summable without being convergent, notice that the oscillatory sequence
{0, 1, 0, 1, . . .} doesn’t converge, but it is Cesàro summable to 1/2, which is the
mean value of {0, 1}. This is typical because averaging has a smoothing effect
so that oscillations that prohibit convergence of the original sequence tend to be
smoothed away or averaged out in the Cesàro sequence.

85
Ernesto Cesàro (1859–1906) was an Italian mathematician who worked mainly in differential
geometry but also contributed to number theory, divergent series, and mathematical physics.
After studying in Naples, Liège, and Paris, Cesàro received his doctorate from the University
of Rome in 1887, and he went on to occupy the chair of mathematics at Palermo. Cesàro’s
most important contribution is considered to be his 1890 book Lezione di geometria intrinseca,
but, in large part, his name has been perpetuated because of its attachment to the concept of
Cesàro summability.
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Similar statements hold for general sequences of vectors and matrices (Ex-
ercise 7.10.11), but Cesàro summability is particularly interesting when it is
applied to the sequence P = {Ak}∞k=0 of powers of a square matrix A. We
know from (7.10.33) and (7.10.34) under what conditions sequence P converges
as well as the nature of the limit, so let’s now suppose that P doesn’t converge,
and decide when P is summable, and what P is summable to.

From now on, we will say that An×n is a convergent matrix when
limk→∞Ak exists, and we will say that A is a summable matrix when
limk→∞(I+A+A2+ · · ·+Ak−1)/k exists. As in the scalar case, if A is conver-
gent to G, then A is summable to G, but not conversely (Exercise 7.10.11).
To analyze the summability of A in the absence of convergence, begin with the
observation that A is summable if and only if the Jordan form J = P−1AP
for A is summable, which in turn is equivalent to saying that each Jordan
block J⋆ in J is summable. Consequently, A cannot be summable whenever

ρ(A) > 1 because if J⋆=

(
λ 1
. . .
. . .

λ

)
is a Jordan block in which |λ| > 1, then

each diagonal entry of
(
I+ J⋆ + · · ·+ Jk−1

⋆

)
/k is

δ(λ, k) =
1 + λ+ · · ·+ λk−1

k
=

1

k

(
1− λk

1− λ

)
=

1

1− λ

(
1

k
− λk

k

)
, (7.10.35)

and this becomes unbounded as k → ∞. In other words, it’s necessary that
ρ(A) ≤ 1 for A to be summable. Since we already know that A is convergent
(and hence summable) to 0 when ρ(A) < 1, we need only consider the case
when A has eigenvalues on the unit circle.

If λ ∈ σ (A) such that |λ| = 1, λ �= 1, and if index (λ) > 1, then there

is an associated Jordan block J⋆=

(
λ 1
. . .

. . .

λ

)
that is larger than 1× 1. Each

entry on the first superdiagonal of
(
I+ J⋆ + · · ·+ Jk−1

⋆

)
/k is the derivative

∂δ/∂λ of the expression in (7.10.35), and it’s not hard to see that ∂δ/∂λ oscil-
lates indefinitely as k → ∞. In other words, A cannot be summable if there
are eigenvalues λ �= 1 on the unit circle such that index (λ) > 1.

Similarly, if λ = 1 is an eigenvalue of index greater than one, then A can’t
be summable because each entry on the first superdiagonal of

I+ J⋆ + · · ·+ Jk−1
⋆

k
is

1 + 2 + · · ·+ (k − 1)

k
=

k(k − 1)

2k
=

k − 1

2
→∞.

Therefore, if A is summable and has eigenvalues λ such that |λ| = 1, then it’s
necessary that index (λ) = 1. The condition also is sufficient—i.e., if ρ(A) = 1
and each eigenvalue on the unit circle is semisimple, then A is summable. This
follows because each Jordan block associated with an eigenvalue µ such that
|µ| < 1 is convergent (and hence summable) to 0 by (7.10.5), and for semisimple
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eigenvalues λ such that |λ| = 1, the associated Jordan blocks are 1× 1 and
hence summable because (7.10.35) implies

1 + λ+ · · ·+ λk−1

k
=





1

1− λ

(
1

k
− λk

k

)
→ 0 for |λ| = 1, λ �= 1,

1 for λ = 1.

In addition to providing a necessary and sufficient condition for A to be
Cesàro summable, the preceding analysis also reveals the nature of the Cesàro

limit because if A is summable, then each Jordan block J⋆ =

(
λ 1
. . .

. . .

λ

)
in

the Jordan form for A is summable, in which case we have established that

lim
k→∞

I+ J⋆ + · · ·+ Jk−1
⋆

k
=





[
1
]
1×1

if λ = 1 and index (λ) = 1,
[
0
]
1×1

if |λ| = 1, λ �= 1, and index (λ) = 1,

0 if |λ| < 1.

Consequently, if A is summable, then the Jordan form for A must look like

J = P−1AP =

(
Ip×p 0
0 C

)
, where p = alg multA (λ = 1) ,

and the eigenvalues of C are such that |λ| < 1 or else |λ| = 1, λ �= 1,

index (λ) = 1. So C is summable to 0, J is summable to
(

Ip×p 0
0 0

)
, and

I+A+ · · ·+Ak−1

k
=P

(
I+ J+ · · ·+ Jk−1

k

)
P−1 → P

(
Ip×p 0
0 0

)
P−1 =G.

Comparing this expression with that in (7.10.32) reveals that the Cesàro limit

is exactly the same as the ordinary limit, had it existed. In other words, if A is
summable, then regardless of whether or not A is convergent, A is summable
to the projector onto N (I−A) along R (I−A). Below is a formal summary
of our observations concerning Cesàro summability.
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Cesàro Summability

• A ∈ Cn×n is Cesàro summable if and only if ρ(A) < 1 or else
ρ(A) = 1 with each eigenvalue on the unit circle being semisimple.

• When it exists, the Cesàro limit

lim
k→∞

I+A+ · · ·+Ak−1

k
= G (7.10.36)

is the projector onto N (I−A) along R (I−A).

• G �= 0 if and only if 1 ∈ σ (A) , in which case G is the spectral
projector associated with λ = 1.

• If A is convergent to G, then A is summable to G, but not
conversely.

Since the projector G onto N (I−A) along R (I−A) plays a prominent
role, let’s consider how G might be computed. Of course, we could just iterate
on Ak or (I+A+ · · ·+Ak−1)/k, but this is inefficient and, depending on the
proximity of the eigenvalues relative to the unit circle, convergence can be slow—
averaging in particular can be extremely slow. The Jordan form is the basis for
the theoretical development, but using it to compute G would be silly (see
p. 592). The formula for a projector given in (5.9.12) on p. 386 is a possibility,
but using a full-rank factorization of I−A is an attractive alternative.

A full-rank factorization of a matrix Mm×n of rank r is a factorization

M = Bm×rCr×n, where rank (B) = rank (C) = r = rank (M). (7.10.37)

All of the standard reduction techniques produce full-rank factorizations. For
example, Gaussian elimination can be used because if B is the matrix of basic
columns of M, and if C is the matrix containing the nonzero rows in the
reduced row echelon form EM, then M = BC is a full-rank factorization
(Exercise 3.9.8, p. 140). If orthogonal reduction (p. 341) is used to produce a

unitary matrix P =

(
P1

P2

)
and an upper-trapezoidal matrix T =

(
T1

0

)
such

that PA = T, where P1 is r ×m and T1 contains the nonzero rows, then
M = P∗

1T1 is a full-rank factorization. If

M = U

(
D 0
0 0

)
V∗ = (U1 |U2)

(
D 0
0 0

)(V∗
1

V∗
2

)
= U1DV

∗
1 (7.10.38)
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is the singular value decomposition (5.12.2) on p. 412 (a URV factorization
(p. 407) could also be used), then M = U1(DV

∗
1) = (U1D)V∗

1 are full-rank
factorizations. Projectors, in general, and limiting projectors, in particular, are
nicely described in terms of full-rank factorizations.

Projectors
If Mn×n = Bn×rCr×n is any full-rank factorization as described in
(7.10.37), and if R (M) and N (M) are complementary subspaces of
Cn, then the projector onto R (M) along N (M) is given by

P = B(CB)−1C (7.10.39)
or

P = U1(V
∗
1U1)

−1V∗
1 when (7.10.38) is used. (7.10.40)

If A is convergent or summable to G as described in (7.10.34) and
(7.10.36), and if I−A = BC is a full-rank factorization, then

G = I−B(CB)−1C (7.10.41)
or

G = I−U1(V
∗
1U1)

−1V∗
1 when (7.10.38) is used. (7.10.42)

Note: Formulas (7.10.39) and (7.10.40) are extensions of (5.13.3) on
p. 430.

Proof. It’s always true (Exercise 4.5.12, p. 220) that

R (Xm×nYn×p) = R (X) when rank (Y) = n,

N (Xm×nYn×p) = N (Y) when rank (X) = n.
(7.10.43)

If Mn×n = Bn×rCr×n is a full-rank factorization, and if R (M) and N (M)
are complementary subspaces of CN , then rank (M) = rank

(
M2
)
(Exercise

5.10.12, p. 402), so combining this with the first part of (7.10.43) produces

r = rank (BC) = rank (BCBC) = rank (CB)r×r =⇒ (CB)−1 exists.

P = B(CB)−1C is a projector because P2 = P (recall (5.9.8), p. 386), and
(7.10.43) insures that R (P) = R (B) = R (M) and N (P) = N (C) = N (M).
Thus (7.10.39) is proved. If (7.10.38) is used to produce a full-rank factorization
M = U1(DV

∗
1), then, because D is nonsingular,

P = (U1D)(V∗
1(U1D))−1V∗

1 = U1(V
∗
1U1)

−1V∗
1.

Equations (7.10.41) and (7.10.42) follow from (5.9.11), p. 386.

Formulas (7.10.40) and (7.10.42) are useful because all good matrix com-
putation packages contain numerically stable SVD implementations from which
U1 and V∗

1 can be obtained. But, of course, the singular values are not needed
in this application.
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Example 7.10.8

Shell Game. As depicted in Figure 7.10.2, a pea is placed under one of four
shells, and an agile manipulator quickly rearranges them by a sequence of discrete
moves. At the end of each move the shell containing the pea has been shifted
either to the left or right by only one position according to the following rules.

#1 #2 #3 #4

11/21/2

1 1/2 1/2

Figure 7.10.2

When the pea is under shell #1, it is moved to position #2, and if the pea is
under shell #4, it is moved to position #3. When the pea is under shell #2 or
#3, it is equally likely to be moved one position to the left or to the right.

Problem 1: Given that we know something about where the pea starts, what
is the probability of finding the pea in any given position after k moves?

Problem 2: In the long run, what proportion of time does the pea occupy each
of the four positions?

Solution to Problem 1: Let pj(k) denote the probability that the pea is in
position j after the kth move, and translate the given information into four
difference equations by writing

p1(k) =
p2(k−1)

2

p2(k) = p1(k−1) +
p3(k−1)

2

p3(k) =
p2(k−1)

2
+ p4(k−1)

p4(k) =
p3(k−1)

2

or




p1(k)

p2(k)

p3(k)

p4(k)



=




0 1/2 0 0

1 0 1/2 0

0 1/2 0 1

0 0 1/2 0







p1(k−1)

p2(k−1)

p3(k−1)

p4(k−1)




.

The matrix equation on the right-hand side is a homogeneous difference equation
p(k) = Ap(k − 1) whose solution, from (7.10.4), is p(k) = Akp(0), and thus
Problem 1 is solved. For example, if you know that the pea is initially under
shell #2, then p(0) = e2, and after six moves the probability that the pea is
in the fourth position is p4(6) =

[
A6e2

]
4
= 21/64. If you don’t know exactly

where the pea starts, but you assume that it is equally likely to start under any
one of the four shells, then p(0) = (1/4, 1/4, 1/4, 1/4)T , and the probabilities
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for occupying the four positions after six moves are given by p(6) = A6p(0), or




p1(6)
p2(6)
p3(6)
p4(6)


 =




11/32 0 21/64 0
0 43/64 0 21/32

21/32 0 43/64 0
0 21/64 0 11/32







1/4
1/4
1/4
1/4


 =

1

256




43
85
85
43


 .

Solution to Problem 2: There is a straightforward solution when A is a con-
vergent matrix because if Ak → G as k → ∞, then p(k)→ Gp(0) = p, and
the components in this limiting (or steady-state) vector p provide the answer.
Intuitively, if p(k) → p, then after awhile p(k) is practically constant, so the
probability that the pea occupies a particular position remains essentially the
same move after move. Consequently, the components in limk→∞ p(k) reveal
the proportion of time spent in each position over the long run. For example,
if limk→∞ p(k) = (1/6, 1/3, 1/3, 1/6)T , then, as the game runs on indefinitely,
the pea is expected to be under shell #1 for about 16.7% of the time, under shell
#2 for about 33.3% of the time, etc.

A Fly in the Ointment: Everything above rests on the assumption that A
is convergent. But A is not convergent for the shell game because a bit of
computation reveals that σ (A) = {±1, ±(1/2)}. That is, there is an eigenvalue
other than 1 on the unit circle, so (7.10.33) guarantees that limk→∞Ak does
not exist. Consequently, there’s no limiting solution p to the difference equation
p(k) = Ap(k − 1), and the intuitive analysis given above does not apply.

Cesàro to the Rescue: However, A is summable because ρ(A) = 1, and
every eigenvalue on the unit circle is semisimple—these are the conditions in
(7.10.36). So as k →∞,

(
I+A+ · · ·+Ak−1

k

)
p(0)→ Gp(0) = p.

The job now is to interpret the meaning of this Cesàro limit in the context of
the shell game. To do so, focus on a particular position—say the jth one—and
set up “counting functions” (random variables) defined as

X(0) =

{
1 if the pea starts under shell j ,
0 otherwise,

and

X(i) =

{
1 if the pea is under shell j after the ith move,
0 otherwise,

i = 1, 2, 3, . . . .

Notice that X(0) +X(1) + · · ·+X(k − 1) counts the number of times the pea
occupies position j before the kth move, so

(
X(0) +X(1) + · · ·+X(k − 1)

)
/k
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represents the fraction of times that the pea is under shell j before the kth

move. Since the expected (or mean) value of X(i) is, by definition,

E[X(i)] = 1× P
(
X(i) = 1

)
+ 0× P

(
X(i) = 0

)
= pj(i),

and since expectation is linear (E[αX(i) +X(h)] = αE[X(i)] + E[X(h)] ), the
expected fraction of times that the pea occupies position j before move k is

E

[
X(0) +X(1) + · · ·+X(k − 1)

k

]
=

E[X(0)] + E[X(1)] + · · ·+ E[X(k − 1)]

k

=
pj(0) + pj(1) + · · ·+ pj(k − 1)

k
=

[
p(0) + p(1) + · · ·+ p(k − 1)

k

]

j

=

[
p(0) +Ap(0) + · · ·+Ak−1p(0)

k

]

j

=

[(
I+A+ · · ·+Ak−1

k

)
p(0)

]

j

→ [Gp(0)]j .

In other words, as the game progresses indefinitely, the components of the Cesàro
limit p = Gp(0) provide the expected proportion of times that the pea is under
each shell, and this is exactly what we wanted to know.

Computing the Limiting Vector. Of course, p can be determined by first
computing G with a full-rank factorization of I−A as described in (7.10.41),
but there is some special structure in this problem that can be exploited to make
the task easier. Recall from (7.2.12) on p. 518 that if λ is a simple eigenvalue for
A, and if x and y∗ are respective right-hand and left-hand eigenvectors associ-
ated with λ, then xy∗/y∗x is the projector onto N (λI−A) along R (λI−A).
We can use this because, for the shell game, λ = 1 is a simple eigenvalue for
A. Furthermore, we get an associated left-hand eigenvector for free—namely,
eT = (1, 1, 1, 1)—because each column sum of A is one, so eTA = eT . Con-
sequently, if x is any right-hand eigenvector of A associated with λ = 1, then
(by noting that eTp(0) = p1(0) + p2(0) + p3(0) + p4(0) = 1) the limiting vector
is given by

p = Gp(0) =
xeTp(0)

eTx
=

x

eTx
=

x∑
xi

. (7.10.44)

In other words, the limiting vector is obtained by normalizing any nonzero so-
lution of (I − A)x = 0 to make the components sum to one. Not only does
(7.10.44) show how to compute the limiting proportions, it also shows that the
limiting proportions are independent of the initial values in p(0). For example, a
simple calculation reveals that x = (1, 2, 2, 1)T is one solution of (I−A)x = 0,
so the vector of limiting proportions is p = (1/6, 1/3, 1/3, 1/6)T . Therefore, if
many moves are made, then, regardless of where the pea starts, we expect the
pea to end up under shell #1 in about 16.7% of the moves, under #2 for about
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33.3% of the moves, under #3 for about 33.3% of the moves, and under shell #4
for about 16.7% of the moves.

Note: The shell game (and its analysis) is a typical example of a random walk

with reflecting barriers, and these problems belong to a broader classification
of stochastic processes known as irreducible, periodic Markov chains. (Markov
chains are discussed in detail in §8.4 on p. 687.) The shell game is irreducible
in the sense of Exercise 4.4.20 (p. 209), and it is periodic because the pea can
return to given position only at definite periods, as reflected in the periodicity
of the powers of A. More details are given in Example 8.4.3 on p. 694.

Exercises for section 7.10

7.10.1. Which of the following are convergent, and which are summable?

A=



−1/2 3/2 −3/2

1 0 −1/2
1 −1 1/2


. B=



0 1 0
0 0 1
1 0 0


. C=



−1 −2 −3/2
1 2 1
1 1 3/2


.

7.10.2. For the matrices in Exercise 7.10.1, evaluate the limit of each convergent
matrix, and evaluate the Cesàro limit for each summable matrix.

7.10.3. Verify that the expressions in (7.10.4) are indeed the solutions to the
difference equations in (7.10.3).

7.10.4. Determine the limiting vector for the shell game in Example 7.10.8 by
first computing the Cesàro limit G with a full-rank factorization.

7.10.5. Verify that the expressions in (7.10.4) are indeed the solutions to the
difference equations in (7.10.3).

7.10.6. Prove that if there exists a matrix norm such that ‖A‖ < 1, then
limk→∞Ak = 0.

7.10.7. By examining the iteration matrix, compare the convergence of Jacobi’s
method and the Gauss–Seidel method for each of the following coefficient
matrices with an arbitrary right-hand side. Explain why this shows that
neither method can be universally favored over the other.

A1 =



1 2 −2
1 1 1
2 2 1


 . A2 =




2 −1 1
2 2 2
−1 −1 2


 .
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7.10.8. Let A =

(
2 −1 0

−1 2 −1
0 −1 2

)
(the finite-difference Example 1.4.1, p. 19).

(a) Verify that A satisfies the special case conditions given in Ex-
ample 7.10.6 that guarantee the validity of (7.10.24).

(b) Determine the optimum SOR relaxation parameter.
(c) Find the asymptotic rates of convergence for Jacobi, Gauss–

Seidel, and optimum SOR.
(d) Use x(0) = (1, 1, 1)T and b = (2, 4, 6)T to run through sev-

eral steps of Jacobi, Gauss–Seidel, and optimum SOR to solve
Ax = b until you can see a convergence pattern.

7.10.9. Prove that if ρ (Hω) < 1, where Hω is the iteration matrix for the SOR
method, then 0 < ω < 2. Hint: Use det (Hω) to show |λk| ≥ |1 − ω|
for some λk ∈ σ (Hω) .

7.10.10. Show that the spectral radius of the Jacobi iteration matrix for the
discrete Laplacian Ln2×n2 described in Example 7.6.2 (p. 563) is
ρ (HJ) = cosπ/(n+ 1).

7.10.11. Consider a scalar sequence {α1, α2, α3, . . .} and the associated Cesàro
sequence of averages {µ1, µ2, µ3, . . .}, where µn = (α1+α2+· · ·+αn)/n.
Prove that if {αn} converges to α, then {µn} also converges to α.

Note: Like scalars, a vector sequence {vn} in a finite-dimensional space
converges to v if and only if for each ǫ > 0 there is a natural number
N = N(ǫ) such that ‖vn − v‖ < ǫ for all n ≥ N, and, by virtue of
Example 5.1.3 (p. 276), it doesn’t matter which norm is used. Therefore,
your proof should also be valid for vectors (and matrices).

7.10.12. M-matrices Revisited. For matrices with nonpositive off-diagonal en-
tries (Z-matrices), prove that the following statements are equivalent.

(a) A is an M-matrix.
(b) All leading principal minors of A are positive.
(c) A has an LU factorization, and both L and U are M-matrices.
(d) There exists a vector x > 0 such that Ax > 0.
(e) Each aii > 0 and AD is diagonally dominant for some diago-

nal matrix D with positive diagonal entries.
(f) Ax ≥ 0 implies x ≥ 0.
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7.10.13. Index by Full-Rank Factorization. Suppose that λ ∈ σ (A) , and
let M1 = A−λI. The following procedure yields the value of index (λ).

Factor M1 = B1C1 as a full-rank factorization.
Set M2 = C1B1.
Factor M2 = B2C2 as a full-rank factorization.
Set M3 = C2B2.
...

In general, Mi = Ci−1Bi−1, where Mi−1 = Bi−1Ci−1 is a full-rank
factorization.

(a) Explain why this procedure must eventually produce a matrix
Mk that is either nonsingular or zero.

(b) Prove that if k is the smallest positive integer such that M−1
k

exists or Mk = 0, then

index (λ) =

{
k − 1 if Mk is nonsingular,
k if Mk = 0.

7.10.14. Use the procedure in Exercise 7.10.13 to find the index of each eigenvalue

of A =

(
−3 −8 −9
5 11 9

−1 −2 1

)
. Hint: σ (A) = {4, 1}.

7.10.15. Let A be the matrix given in Exercise 7.10.14.
(a) Find the Jordan form for A.
(b) For any function f defined at A, find the Hermite interpolation

polynomial that is described in Example 7.9.4 (p. 606), and
describe f(A).

7.10.16. Limits and Group Inversion. Given a matrix Bn×n of rank r such
that index (B) ≤ 1 (i.e., index (λ = 0) ≤ 1 ), the Jordan form for B

looks like
(

0 0
0 Cr×r

)
= P−1BP, so B = P

(
0 0
0 C

)
P−1, where C

is nonsingular. This implies that B belongs to an algebraic group G
with respect to matrix multiplication, and the inverse of B in G is

B# = P
(

0 0
0 C−1

)
P−1. Naturally, B# is called the group inverse of

B. The group inverse is a special case of the Drazin inverse discussed in
Example 5.10.5 on p. 399, and properties of group inversion are devel-
oped in Exercises 5.10.11–5.10.13 on p. 402. Prove that if limk→∞Ak

exists, and if B = I−A, then

lim
k→∞

Ak = I−BB#.

In other words, the limiting matrix can be characterized as the differ-
ence of two identity elements— I is the identity in the multiplicative
group of nonsingular matrices, and BB# is the identity element in the
multiplicative group containing B.
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7.10.17. If Mn×n is a group matrix (i.e., if index (M) ≤ 1 ), then the group
inverse of M can be characterized as the unique solution M# of the
equations MM#M = M, M#MM# = M#, and MM# = M#M.
In fact, some authors use these equations to define M#. Use this char-
acterization to show that if M = BC is any full-rank factorization of
M, then M# = B(CB)−2C. In particular, if M = U1DV

∗
1 is the

full-rank factorization derived from the singular value decomposition as
described in (7.10.38), then

M# = U1D
−1/2(V∗

1U1)
−2D−1/2V∗

1

= U1D
−1(V∗

1U1)
−2V∗

1

= U1(V
∗
1U1)

−2D−1V∗
1.
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7.11 MINIMUM POLYNOMIALS AND KRYLOV METHODS

The characteristic polynomial plays a central role in the theoretical development
of linear algebra and matrix analysis, but it is not alone in this respect. There
are other polynomials that occur naturally, and the purpose of this section is to
explore some of them.

In this section it is convenient to consider the characteristic polynomial of
A ∈ Cn×n to be c(x) = det (xI−A). This differs from the definition given on
p. 492 only in the sense that the coefficients of c(x) = det (xI−A) have different
signs than the coefficients of ĉ(x) = det (A− xI). In particular, c(x) is a monic

polynomial (i.e., its leading coefficient is 1), whereas the leading coefficient of ĉ(x)
is (−1)n. (Of course, the roots of c and ĉ are identical.)

Monic polynomials p(x) such that p(A) = 0 are said to be annihilating
polynomials for A. For example, the Cayley–Hamilton theorem (pp. 509, 532)
guarantees that c(x) is an annihilating polynomial of degree n.

Minimum Polynomial for a Matrix
There is a unique annihilating polynomial for A of minimal degree, and
this polynomial, denoted by m(x), is called theminimum polynomial

for A. The Cayley–Hamilton theorem guarantees that deg[m(x)] ≤ n.

Proof. Only uniqueness needs to be proven. Let k be the smallest degree of
any annihilating polynomial for A. There is a unique annihilating polynomial
for A of degree k because if there were two different annihilating polynomials
p1(x) and p2(x) of degree k, then d(x) = p1(x)− p2(x) would be a nonzero
polynomial such that d(A) = 0 and deg[d(x)] < k. Dividing d(x) by its leading
coefficient would produce an annihilating polynomial of degree less than k, the
minimal degree, and this is impossible.

The first problem is to describe what the minimum polynomial m(x) for
A ∈ Cn×n looks like, and the second problem is to uncover the relationship
between m(x) and the characteristic polynomial c(x). The Jordan form for
A reveals everything. Suppose that A = PJP−1, where J is in Jordan form.
Since p(A) = 0 if and only if p(J) = 0 or, equivalently, p(J⋆) = 0 for each
Jordan block J⋆, it’s clear that m(x) is the monic polynomial of smallest degree
that annihilates all Jordan blocks. If J⋆ is a k × k Jordan block associated
with an eigenvalue λ, then (7.9.2) on p. 600 insures that p(J⋆) = 0 if and
only if p(i)(λ) = 0 for i = 0, 2, . . . , k − 1, and this happens if and only if
p(x) = (x− λ)kq(x) for some polynomial q(x). Since this must be true for
all Jordan blocks associated with λ, it must be true for the largest Jordan
block associated with λ, and thus the minimum degree monic polynomial that
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annihilates all Jordan blocks associated with λ is

pλ(x) = (x− λ)kλ , where kλ = index (λ).

Since the minimum polynomial for A must annihilate the largest Jordan block
associated with each λj ∈ σ (A) , it follows that

m(x) = (x− λ1)
k1(x− λ2)

k2 · · · (x− λs)
ks , where kj = index (λj) (7.11.1)

is the minimum polynomial for A.

Example 7.11.1

Minimum Polynomial, Gram–Schmidt, and QR. If you are willing to
compute the eigenvalues λj and their indicies kj for a given A ∈ Cn×n, then,
as shown in (7.11.1), the minimum polynomial for A ∈ Cn×n is obtained by
setting m(x) = (x− λ1)

k1(x− λ2)
k2 · · · (x− λs)

ks . But finding the eigenvalues
and their indicies can be a substantial task, so let’s consider how we might
construct m(x) without computing eigenvalues. An approach based on first
principles is to determine the first matrix Ak for which {I,A,A2, . . . ,Ak} is
linearly dependent. In other words, if k is the smallest positive integer such that
Ak =

∑k−1
j=0 αjA

j , then the minimum polynomial for A is

m(x) = xk −
k−1∑

j=0

αjx
j .

The Gram–Schmidt orthogonalization procedure (p. 309) with the standard in-
ner product 〈A B〉 = trace (A∗B) (p. 286) is the perfect theoretical tool for
determining k and the αj ’s. Gram–Schmidt applied to {I,A,A2, . . .} begins
by setting U0 = I/ ‖I‖F = I/

√
n, and it proceeds by sequentially computing

Uj =
Aj −∑j−1

i=0

〈
Ui A

j
〉
Ui

‖Aj −∑j−1
i=0 〈Ui Aj〉Ui‖F

for j = 1, 2, . . . (7.11.2)

until Ak −∑k−1
i=0

〈
Ui A

k
〉
Ui = 0. The first such k is the smallest positive in-

teger such that Ak ∈ span {U0,U1, . . . ,Uk−1} = span
{
I,A, . . . ,Ak−1

}
. The

coefficients αj such that Ak =
∑k−1

j=0 αjA
j are easily determined from the

upper-triangular matrix R in the QR factorization produced by the Gram–
Schmidt process. To see how, extend the notation in the discussion on p. 311 in
an obvious way to write (7.11.2) in matrix form as

[
I |A | · · · |Ak

]
=
[
U0 |U1 | · · · |Uk

]




ν0 r01 · · · r0k−1 r0k
0 ν1 · · · r1k−1 r1k
...

...
. . .

. . .
...

0 0 νk−1 rk−1k

0 0 · · · 0 0




, (7.11.3)
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where ν0 = ‖I‖F =
√
n , νj =

∥∥∥Aj −∑j−1
i=0

〈
Ui A

j
〉
Ui

∥∥∥
F
, and rij =

〈
Ui A

j
〉
.

If we set R =




ν0 · · · r0k−1

. . .
...

νk−1


 and c =




r0k

...
rk−1k


, then (7.11.3) implies that

Ak =
[
U0| · · · |Uk−1

]
c =

[
I| · · · |Ak−1

]
R−1c, so R−1c =




α0

..

.
αk−1


 contains

the coefficients such that Ak =
∑k−1

j=0 αjA
j , and thus the coefficients in the

minimum polynomial are determined.

Caution! While Gram–Schmidt works fine to produce m(x) in exact arith-
metic, things are not so nice in floating-point arithmetic. For example, if A
has a dominant eigenvalue, then, as explained in the power method (Example
7.3.7, p. 533), Ak asymptotically approaches the dominant spectral projector
G1, so, as k grows, Ak becomes increasingly close to span

{
I,A, . . . ,Ak−1

}
.

Consequently, finding the first Ak that is truly in span
{
I,A, . . . ,Ak−1

}
is

an ill-conditioned problem, and Gram–Schmidt may not work well in floating-
point arithmetic—the modified Gram–Schmidt algorithm (p. 316), or a version
of Householder reduction (p. 341), or Arnoldi’s method (p. 653) works better.
Fortunately, explicit knowledge of the minimum polynomial often is not needed
in applied work.

The relationship between the characteristic polynomial c(x) and the mini-
mum polynomial m(x) for A is now transparent. Since

c(x) = (x− λ1)
a1(x− λ2)

a2 · · · (x− λs)
as , where aj = alg mult (λj),

and

m(x) = (x− λ1)
k1(x− λ2)

k2 · · · (x− λs)
ks , where kj = index (λj),

it’s clear that m(x) divides c(x). Furthermore, m(x) = c(x) if and only if
alg mult (λj) = index (λj) for each λj ∈ σ (A) . Matrices for which m(x) = c(x)
are said to be nonderogatory matrices, and they are precisely the ones for
which geo mult (λj) = 1 for each eigenvalue λj because

m(x) = c(x)⇐⇒ alg mult (λj) = index (λj) for each j

⇐⇒ there is only one Jordan block for each λj

⇐⇒ there is only one independent eigenvector for each λj

⇐⇒ geo mult (λj) = 1 for each λj .

In addition to dividing the characteristic polynomial c(x), the minimum
polynomial m(x) divides all other annihilating polynomials p(x) for A be-
cause deg[m(x)] ≤ deg[p(x)] insures the existence of polynomials q(x) and
r(x) (quotient and remainder) such that

p(x) = m(x)q(x) + r(x), where deg[r(x)] < deg[m(x)].
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Since
0 = p(A) = m(A)q(A) + r(A) = r(A),

it follows that r(x) = 0; otherwise r(x), when normalized to be monic, would
be an annihilating polynomial having degree smaller than the degree of the min-
imum polynomial.

The structure of the minimum polynomial for A is related to the diago-
nalizability of A. By combining the fact that kj = index (λj) is the size of
the largest Jordan block for λj with the fact that A is diagonalizable if and
only if all Jordan blocks are 1× 1, it follows that A is diagonalizable if and
only if kj = 1 for each j, which, by (7.11.1), is equivalent to saying that
m(x) = (x−λ1)(x−λ2) · · · (x−λs). In other words, A is diagonalizable if and
only if its minimum polynomial is the product of distinct linear factors.

Below is a summary of the preceding observations about properties of m(x).

Properties of the Minimum Polynomial
Let A ∈ Cn×n with σ (A) = {λ1, λ2, . . . , λs} .

• The minimum polynomial of A is the unique monic polynomial
m(x) of minimal degree such that m(A) = 0.

• m(x) = (x− λ1)
k1(x− λ2)

k2 · · · (x− λs)
ks , where kj = index (λj).

• m(x) divides every polynomial p(x) such that p(A) = 0. In par-
ticular, m(x) divides the characteristic polynomial c(x). (7.11.4)

• m(x) = c(x) if and only if geo mult (λj) = 1 for each λj or,
equivalently, alg mult (λj) = index (λj) for each j, in which case
A is called a nonderogatory matrix.

• A is diagonalizable if and only if m(x) = (x−λ1)(x−λ2) · · · (x−λs)
(i.e., if and only if m(x) is a product of distinct linear factors).

The next immediate aim is to extend the concept of the minimum polyno-
mial for a matrix to formulate the notion of a minimum polynomial for a vector.
To do so, it’s helpful to introduce Krylov

86
sequences, subspaces, and matrices.

86
Aleksei Nikolaevich Krylov (1863–1945) showed in 1931 how to use sequences of the form

{b, Ab, A2b, . . .} to construct the characteristic polynomial of a matrix (see Example 7.11.3
on p. 649). Krylov was a Russian applied mathematician whose scientific interests arose from
his early training in naval science that involved the theories of buoyancy, stability, rolling
and pitching, vibrations, and compass theories. Krylov served as the director of the Physics–
Mathematics Institute of the Soviet Academy of Sciences from 1927 until 1932, and in 1943
he was awarded a “state prize” for his work on compass theory. Krylov was made a “hero of
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Krylov Sequences, Subspaces, and Matrices
For A ∈ Cn×n and 0 �= b ∈ Cn×1, we adopt the following terminology.

• {b, Ab, A2b, . . . ,Aj−1b} is called a Krylov sequence.

• Kj = span
{
b, Ab, . . . ,Aj−1b

}
is called a Krylov subspace.

• Kn×j =
(
b |Ab | · · · |Aj−1b

)
is called a Krylov matrix.

Since dim(Kj) ≤ n (because Kj ⊆ Cn×1 ), there is a first vector Akb in
the Krylov sequence that is a linear combination of preceding Krylov vectors. If

Akb =

k−1∑

j=0

αjA
jb, then we define v(x) = xk −

k−1∑

j=0

αjx
j ,

and we say that v(x) is an annihilating polynomial for b relative to A
because v(x) is a monic polynomial such that v(A)b = 0. The argument on
p. 642 that establishes uniqueness of the minimum polynomial for matrices can
be reapplied to prove that for each matrix–vector pair (A,b) there is a unique
annihilating polynomial of b relative to A that has minimal degree. These
observations are formalized below.

Minimum Polynomial for a Vector

• The minimum polynomial for b ∈ Cn×1 relative to A ∈ Cn×n

is defined to be the monic polynomial v(x) of minimal degree such
that v(A)b = 0.

• If Akb is the first vector in the Krylov sequence {b, Ab, A3b, . . .}
that is a linear combination of preceding Krylov vectors (say

Akb =
∑k−1

j=0 αjA
jb ), then v(x) = xk −∑k−1

j=0 αjx
j (or v(x) = 1

when b = 0 ) is the minimum polynomial for b relative to A.

socialist labor,” and he is one of a few mathematicians to have a lunar feature named in his
honor—on the moon there is the “Crater Krylov.”
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So is the minimum polynomial for a matrix related to minimum polynomials
for vectors? It seems intuitive that knowing the minimum polynomial of b rela-
tive to A for enough different vectors b should somehow lead to the minimum
polynomial for A. This is indeed the case, and here is how it’s done. Recall that
the least common multiple (LCM) of polynomials v1(x), . . . , vn(x) is the unique
monic polynomial l(x) such that

(i) each vi(x) divides l(x);

(ii) if each vi(x) also divides q(x), then l(x) divides q(x).

Minimum Polynomial as LCM
Let A ∈ Cn×n, and let B = {b1,b2, . . . ,bn} be any basis for Cn×1.
If vi(x) is the minimum polynomial for bi relative to A, then the
minimum polynomial m(x) for A is the least common multiple of
v1(x), v2(x), . . . , vn(x). (7.11.5)

Proof. The strategy first is to prove that if l(x) is the LCM of the vi(x) ’s,
then m(x) divides l(x). Then prove the reverse by showing that l(x) also
divides m(x). Since each vi(x) divides l(x), it follows that l(A)bi = 0 for
each i. In other words, B ⊂ N(l(A)), so dimN(l(A)) = n or, equivalently,
l(A) = 0. Therefore, by property (7.11.4) on p. 645, m(x) divides l(x). Now
show that l(x) divides m(x) . Since m(A)bi = 0 for every bi, it follows that
deg[vi(x)] < deg[m(x)] for each i, and hence there exist polynomials qi(x) and
ri(x) such that m(x) = qi(x)vi(x) + ri(x), where deg[ri(x)] < deg[vi(x)]. But

0 = m(A)bi = qi(A)vi(A)bi + ri(A)bi = ri(A)bi

insures ri(x) = 0, for otherwise ri(x) (when normalized to be monic) would be
an annihilating polynomial for bi of degree smaller than the minimum polyno-
mial for bi, which is impossible. In other words, each vi(x) divides m(x), and
this implies l(x) must also divide m(x). Therefore, since m(x) and l(x) are
divisors of each other, it must be the case that m(x) = l(x).

The utility of this result is illustrated in the following development. We
already know that associated with n× n matrix A is an nth-degree monic
polynomial—namely, the characteristic polynomial c(x) = det (xI−A). But
the reverse is also true. That is, every nth-degree monic polynomial is the char-
acteristic polynomial of some n× n matrix.



648 Chapter 7 Eigenvalues and Eigenvectors

Companion Matrix of a Polynomial
For each monic polynomial p(x) = xn + αn−1x

n−1 + · · ·+ α1x+ α0,
the companion matrix of p(x) is defined (by G. Frobenius) to be

C =




0 0 · · · 0 −α0

1 0 · · · 0 −α1

...
. . .

. . .
...

0 · · · 1 0 −αn−2

0 0 · · · 1 −αn−1




n×n

. (7.11.6)

• The polynomial p(x) is both the characteristic and minimum poly-
nomial for C (i.e., C is nonderogatory).

Proof. To prove that det (xI−C) = p(x), write C = N− ceTn , where

N =




0

1
. . .
. . .

. . .
1 0


 and c =




α0

α1

...
αn−1


 ,

and use (6.2.3) on p. 475 to conclude that

det (xI−C) = det (xI−N)(1 + eTndet (xI−N)
−1
c)

= xn
(
1 + eTn

(
I

x
+
N

x2
+
N2

x3
+ · · ·+ Nn−1

xn

)
c

)

= xn + αn−1x
n−1 + αn−2x

n−2 + · · ·+ α0

= p(x).

The fact that p(x) is also the minimum polynomial for C is a consequence of
(7.11.5). Set B = {e1, e2, . . . , en} , and let vi(x) be the minimum polynomial
of ei with respect to C. Observe that v1(x) = p(x) because Cej = ej+1 for
j = 1, . . . , n− 1, so

{e1, Ce1, C
2e1, . . . ,C

n−1e1} = {e1, e2, e3, . . . , en}
and

Cne1 = Cen = C∗n = −
n−1∑

j=0

αjej+1 = −
n−1∑

j=0

αjC
je1 =⇒ v1(x) = p(x).

Since v1(x) divides the LCM of all vi(x) ’s (which we know from (7.11.5) to be
the minimum polynomial m(x) for C ), we conclude that p(x) divides m(x).
But m(x) always divides p(x)—recall (7.11.4)—so m(x) = p(x).
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Example 7.11.2

Poor Man’s Root Finder. The companion matrix is the source of what is
often called the poor man’s root finder because any general purpose algorithm
designed to compute eigenvalues (e.g., the QR iteration on p. 535) can be applied
to the companion matrix for a polynomial p(x) to compute the roots of p(x).
When used in conjunction with (7.1.12) on p. 497, the companion matrix is also
a poor man’s root bounder . For example, it follows that if λ is a root of p(x),
then

|λ| ≤ ‖C‖∞ = max{|α0|, 1 + |α1|, . . . , 1 + |αn−1|} ≤ 1 + max |αi|.

The results on p. 647 insure that the minimum polynomial v(x) for every
nonzero vector b relative to A ∈ Cn×n divides the minimum polynomial m(x)
for A, which in turn divides the characteristic polynomial c(x) for A, so it
follows that every v(x) divides c(x). This suggests that it might be possible to
construct c(x) as a product of vi(x) ’s. In fact, this is what Krylov did in 1931,
and the following example shows how he did it.

Example 7.11.3

Krylov’s method for constructing the characteristic polynomial for A ∈ Cn×n

as a product of minimum polynomials for vectors is as follows.

Starting with any nonzero vector bn×1, let v1(x) = xk−∑k−1
j=0 αjx

j be the min-

imum polynomial for b relative to A, and let K1 =
(
b |Ab | · · · |Ak−1b

)
n×k

be the associated Krylov matrix. Notice that rank (K1) = k (by definition of
the minimum polynomial for b ). If C1 is the k × k companion matrix of v(x)
as described in (7.11.6), then direct multiplication shows that

K1C1 = AK1. (7.11.7)

If k = n, then K−1
1 AK1 = C1, so v1(x) must be the characteristic polynomial

for A, and there is nothing more to do. If k < n, then use any n× (n− k)

matrix K̃1 such that K2 =
(
K1 | K̃1

)
n×n

is nonsingular, and use (7.11.7) to
write

AK2 =
(
AK1 |AK̃1

)
=
(
K1 | K̃1

)(C1 X
0 A2

)
, where

(
X
A2

)
= K−1

2 AK̃1.

Therefore, K−1
2 AK2 =

(
C1 X
0 A2

)
, and hence

c(x) = det (xI−A) = det (xI−C1)det (xI−A2) = v1(x) det (xI−A2).
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Repeat the process on A2. If the Krylov matrix on the second time around is
nonsingular, then c(x) = v1(x)v2(x); otherwise c(x) = v1(x)v2(x) det (xI−A3)
for some matrix A3. Continuing in this manner until a nonsingular Krylov
matrix is obtained—say at the mth step—produces a nonsingular matrix K
such that

K−1AK=




C1 · · · ⋆

. . .
.
.
.

Cm


 = H, (7.11.8)

where the Cj ’s are companion matrices, and thus c(x) = v1(x)v2(x) · · · vm(x).
Note: All companion matrices are upper-Hessenberg matrices as described in
Example 5.7.4 (p. 350)—e.g., a 5× 5 Hessenberg form is

H5 =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


 .

Since the matrix H in (7.11.8) is upper Hessenberg, we see that Krylov’s method
boils down to a recipe for using Krylov sequences to build a similarity transfor-
mation that will reduce A to upper-Hessenberg form. In effect, this means that
most information about A can be derived from Krylov sequences and the asso-
ciated Hessenberg form H. This is the real message of this example.

Deriving information about A by using a Hessenberg form and a Krylov
similarity transformation as shown in (7.11.8) has some theoretical appeal, but
it’s not a practical idea as far as computation is concerned. Krylov sequences tend
to be nearly linearly dependent sets because, as the power method of Example
7.3.7 (p. 533) indicates, the directions of the vectors Akb want to converge to
the direction of an eigenvector for A, so, as k grows, the vectors in a Krylov
sequence become ever closer to being multiples of each other. This means that
Krylov matrices tend to be ill conditioned. Putting conditioning issues aside,
there is still a problem with computational efficiency because K is usually a
dense matrix (one with a preponderance of nonzero entries) even when A is
sparse (which it often is in applied work), so the amount of arithmetic involved
in the reduction (7.11.8) is prohibitive.

However, these objections often can be overcome by replacing a Krylov
matrix K =

(
b |Ab | · · · |Ak−1b

)
with its QR factorization K = Qn×kRk×k.

Doing so in (7.11.7) (and dropping the subscript) produces

AK = KC =⇒ AQR = QRC =⇒ Q∗AQ = RCR−1 = H. (7.11.9)

While H = RCR−1 is no longer a companion matrix, it’s still in upper-
Hessenberg form (convince yourself by writing out the pattern for the 4× 4
case). In other words, an orthonormal basis for a Krylov subspace can reduce a
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matrix to upper-Hessenberg form. Since matrices with orthonormal columns are
perfectly conditioned, the first objection raised above is overcome. The second
objection concerning computational efficiency is dealt with in Examples 7.11.4
and 7.11.5.

If k < n, then Q is not square, and Q∗AQ = H is not a similarity
transformation, so it would be wrong to conclude that A and H have the same
spectral properties. Nevertheless, it’s often the case that the eigenvalues of H,
which are called the Ritz values for A, are remarkably good approximations to
the extreme eigenvalues of A, especially when A is hermitian. This is somewhat
intuitive because Q∗AQ can be viewed as a generalization of (7.5.4) on p. 549
that says λmax = max‖x‖2=1 x

∗Ax and λmin = min‖x‖2=1 x
∗Ax. The results

of Exercise 5.9.15 (p. 392) can be used to argue the point further.

Example 7.11.4

Lanczos
87
Tridiagonalization Algorithm. The fact that the matrix H in

(7.11.9) is upper Hessenberg is particularly nice when A is real and symmetric
because AT = A implies HT = (QTAQ)T = H, and symmetric Hessenberg
matrices are tridiagonal in structure. That is,

H =




α1 β1

β1 α2 β2

β2 α3

. . .

. . .
. . . βn−1

βn−1 αn




when A = AT . (7.11.10)

This makes Q particularly easy to determine. While the matrix Q in (7.11.9)
was only n× k, let’s be greedy and look for an n× n orthogonal matrix Q
such that AQ = QH, where H is tridiagonal as depicted in (7.11.10). If we
set Q =

(
q1 |q2 | · · · |qn

)
, and if we agree to let β0 = 0 and qn+1 = 0, then

87
Cornelius Lanczos (1893–1974) was born Kornél Löwy in Budapest, Hungary, to Jewish par-
ents, but he changed his name to avoid trouble during the dangerous times preceding World
War II. After receiving his doctorate from the University of Budapest in 1921, Lanczos moved
to Germany where he became Einstein’s assistant in Berlin in 1928. After coming home to
Germany from a visit to Purdue University in Lafayette, Indiana, in 1931, Lanczos decided
that the political climate in Germany was unacceptable, and he returned to Purdue in 1932 to
continue his work in mathematical physics. The development of electronic computers stimu-
lated Lanczos’s interest in numerical analysis, and this led to positions at the Boeing Company
in Seattle and at the Institute for Numerical Analysis of the National Bureau of Standards
in Los Angeles. When senator Joseph R. McCarthy led a crusade against communism in the
1950s, Lanczos again felt threatened, so he left the United States to accept an offer from the
famous Nobel physicist Erwin Schrödinger (1887–1961) to head the Theoretical Physics De-
partment at the Dublin Institute for Advanced Study in Ireland where Lanczos returned to his
first love—the theory of relativity. Lanczos was aware of the fast Fourier transform algorithm
(p. 373) 25 years before the heralded work of J. W. Cooley and J. W. Tukey (p. 368) in 1965,
but 1940 was too early for applications of the FFT to be realized. This is yet another instance
where credit and fame are accorded to those who first make good use of an idea rather than
to those who first conceive it.
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equating the jth column of AQ to the jth column of QH tells us that we
must have

Aqj = βj−1qj−1 + αjqj + βjqj+1 for j = 1, 2, . . . , n

or, equivalently,

βjqj+1 = vj , where vj = Aqj − αjqj − βj−1qj−1 for j = 1, 2, . . . , n.

By observing that αj = qTj Aqj and βj = ‖vj‖2 , we are led to Lanczos’s

algorithm.

• Start with an arbitrary b �= 0, set β0 = 0, q0 = 0, q1 = b/ ‖b‖2 , and
iterate as indicated below.

For j = 1 to n
v ← Aqj
αj ← qTj v
v ← v − αjqj − βj−1qj−1

βj ← ‖v‖2
If βj = 0, then quit

qj+1← v/βj
End

After the kth step we have an n× (k + 1) matrix Qk+1 =
(
q1 |q2 | · · · |qk+1

)

of orthonormal columns such that

AQk = Qk+1

(
Tk

βke
T
k

)
, where Tk is the k × k tridiagonal form (7.11.10).

If the iteration terminates prematurely because βj = 0 for j < n, then restart
the algorithm with a new initial vector b that is orthogonal to q1,q2, . . . ,qj .
When a full orthonormal set {q1,q2, . . . ,qn} has been computed and turned
into an orthogonal matrix Q, we will have

QTAQ =




T1 0 · · · 0
0 T2 · · · 0
.
..

.

..
. . .

.

..
0 0 · · · Tm


, where each Ti is tridiagonal (7.11.11)

with the splits occurring at rows where the βj ’s are zero. Of course, having these
splits is generally a desirable state of affairs, especially when the objective is to
compute the eigenvalues of A.

Note: The Lanczos algorithm is computationally efficient because if each row of
A has ν nonzero entries, then each matrix–vector product uses νn multiplica-
tions, so each step of the process uses only νn+ 4n multiplications (and about
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the same number of additions). This can be a tremendous savings over what
is required by Householder (or Givens) reduction as discussed in Example 5.7.4
(p. 350). Once the form (7.11.11) has been determined, spectral properties of A
usually can be extracted by a variety of standard methods such as the QR iter-
ation (p. 535). An alternative to computing the full tridiagonal decomposition
is to stop the Lanczos iteration before completion, accept the Ritz values (the
eigenvalues Hk×k = QT

k×nAQn×k) as approximations to a portion of σ (A) ,
deflate the problem, and repeat the process on the smaller result.

Even when A is not symmetric, the same logic that produces the Lanc-
zos algorithm can be applied to obtain an orthogonal matrix Q such that
QTAQ = H is upper Hessenberg. But we can’t expect to obtain the efficiency
that Lanczos provides because the tridiagonal structure is lost. The more general
algorithm is called Arnoldi’s

88
method, and it’s presented below.

Example 7.11.5

Arnoldi Orthogonalization Algorithm. Given A ∈ Cn×n, the goal is to
compute an orthogonal matrix Q =

(
q1 |q2 | · · · |qn

)
such that QTAQ = H

is upper Hessenberg. Proceed in the manner that produced the Lanczos algorithm
by equating the jth column of AQ to the jth column of QH to obtain

Aqj =

j+1∑

i=1

qihij =⇒ qTkAqj =

j+1∑

i=1

qTk qihij = hkj for each 1 ≤ k ≤ j

=⇒ hj+1,jqj+1 = Aqj −
j∑

i=1

qihij .

By observing that hj+1,j = ‖vj‖2 for vj = Aqj −
∑j

i=1 qihij , we are led to
Arnoldi’s algorithm.

• Start with an arbitrary b �= 0, set q1 = b/ ‖b‖2 , and then iterate as
indicated below.

88
Walter Edwin Arnoldi (1917–1995) was an American engineer who published this technique in
1951, not far from the time that Lanczos’s algorithm emerged. Arnoldi received his undergrad-
uate degree in mechanical engineering from Stevens Institute of Technology, Hoboken, New
Jersey, in 1937 and his MS degree at Harvard University in 1939. He spent his career working
as an engineer in the Hamilton Standard Division of the United Aircraft Corporation where he
eventually became the division’s chief researcher. He retired in 1977. While his research con-
cerned mechanical and aerodynamic properties of aircraft and aerospace structures, Arnoldi’s
name is kept alive by his orthogonalization procedure.
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For j = 1 to n
v ← Aqj
For i = 1 to j

hij ← qTi v
v ← v − hijqi

End For

hj+1,j← ‖v‖2
If hj+1,j = 0, then quit

qj+1 ← v/hj+1,j

End For

(7.11.12)

After the kth step we have an n× (k + 1) matrix Qk+1 =
(
q1 |q2 | · · · |qk+1

)

of orthonormal columns such that

AQk = Qk+1

(
Hk

hk+1,ke
T
k

)
, (7.11.13)

where Hk is a k × k upper-Hessenberg matrix.

Note: Remarks similar to those made about the Lanczos algorithm also hold
for Arnoldi’s algorithm, but the computational efficiency of Arnoldi is not as
great as that of Lanczos. Close examination of Arnoldi’s method reveals that it
amounts to a modified Gram–Schmidt process (p. 316).

Krylov methods are a natural way to solve systems of linear equations. To
see why, suppose that An×nx = b with b �= 0 is a nonsingular system, and let

v(x) = xk −∑k−1
j=0 αjx

j be the minimum polynomial of b with respect to A.
Since α0 �= 0 (otherwise v(x)/x would be an annihilating polynomial for b of
degree less than deg v), we have

Akb−
k−1∑

j=0

αjA
jb = 0 =⇒ A

[
Ak−1b− αk−1A

k−2b− · · · − α1b

α0

]
= b.

In other words, the solution of Ax = b is somewhere in the Krylov space Kk.
A technique for sorting through Kk to find the solution (or at least an

acceptable approximate solution) of Ax = b is to sequentially consider the
subspaces A(K1), A(K2), . . . , A(Kk), where at the jth step of the process the
vector xj ∈ A(Kj) that is closest to b is used as an approximation to x. If
Qj is an n× j orthogonal matrix whose columns constitute a basis for Kj ,
then R (AQj) = A(Kj), so the vector xj ∈ A(Kj) that is closest to b is the
orthogonal projection of b onto R (AQj). This means that xj is the least
squares solution of AQjz = b (p. 439). If the solution of this least squares
problem yields a vector xj such that the residual rj = b − AQjxj is zero
(or satisfactorily small), then set x = Qjxj , and quit. Otherwise move up one
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dimension, and compute the least squares solution xj+1 of AQj+1z = b. Since
x ∈ Kk, the process is guaranteed to terminate in k ≤ n steps or less (when
exact arithmetic is used). When Arnoldi’s method is used to implement this idea,
the resulting algorithm is known as GMRES (an acronym for the generalized

minimal residual algorithm that was formulated by Yousef Saad and Martin H.
Schultz in 1986).

Example 7.11.6

GMRES Algorithm. To implement the idea discussed above by employing
Arnoldi’s algorithm, recall from (7.11.13) that after j steps of the Arnoldi pro-
cess we have matrices Qj and Qj+1 with orthonormal columns that span Kj

and Kj+1, respectively, along with a j × j upper-Hessenberg matrix Hj such
that

AQj = Qj+1H̃j , where H̃j =

(
Hj

hj+1,je
T
j

)
.

Consequently the least squares solution of AQjz = b is the same as the least

squares solution of Qj+1H̃jz = b, which in turn is the same as the least squares

solution of H̃jz = QT
j+1b. But QT

j+1b = ‖b‖2 e1 (because the first column in
Qj+1 is b/ ‖b‖2), so the GMRES algorithm is as follows.

• To compute the solution to a nonsingular linear system An×nx = b �= 0,
start with q1 = b/ ‖b‖2 , and iterate as indicated below.

For j = 1 to n

execute the jth Arnoldi step in (7.11.12)

compute the least squares solution of H̃jz = ‖b‖2 e1 by using a QR

factorization of H̃j (see Note at the end of the example)

If ‖b−AQjz‖2 = 0 (or is satisfactorily small)

set x = Qjz, and quit (see Note at the end of the example)

End If

End For

The structure of the H̃j ’s allows us to update the QR factors of H̃j to produce

the QR factors of H̃j+1 with a single plane rotation (p. 333). To see how this
is done, consider what happens when moving from the third step to the fourth

step of the process. Let U3 =
(

QT

vT

)
be the 4× 4 orthogonal matrix that was

previously accumulated (as a product of plane rotations) to give U3H̃3 =
(

R3

0

)

with R3 being upper triangular so that H̃3 = QR3. Since
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(
U3 0
0 1

)
H̃4 =

(
U3 0
0 1

)



⋆
⋆

H̃3 ⋆
⋆

0 0 0 ⋆


 =




⋆
⋆

U3H̃3 ⋆
⋆

0 0 0 ⋆


 =




⋆ ⋆ ⋆ ⋆
0 ⋆ ⋆ ⋆
0 0 ⋆ ⋆
0 0 0 ⋆

0 0 0 ⋆


,

a plane rotation of the form P45 =




1
1

1
c s
−s c


 will annihilate the entry in

the lower-right-hand corner of this last array. Consequently, U4 = P45

(
U3 0
0 1

)

is an orthogonal matrix such that U4H̃4 =
(

R4

0

)
, where R4 is upper triangu-

lar, and this produces the QR factors of H̃4.

Note: The value of the residual norm ‖b−AQjz‖2 at each step of GMRES is
available at almost no cost. To see why, notice that the previous discussion shows

that at the jth step there is a (j + 1)× (j + 1) orthogonal matrix U =
(

QT

vT

)

(that exists as an accumulation of plane rotations) such that UH̃j =
(

R
0

)
,

and this produces H̃j = QR. The least squares solution of H̃jz = ‖b‖2 e1 is
obtained by solving Rz = QT ‖b‖2 e1 (p. 314), so

‖b−AQjz‖2 =
∥∥∥‖b‖2 e1 − H̃jz

∥∥∥
2
=
∥∥∥‖b‖2Ue1 −

(
R
0

)
z
∥∥∥

2

=
∥∥∥‖b‖2

(
QT

vT

)
e1 −

(
R
0

)
z
∥∥∥

2
=
∥∥∥
(

0
‖b‖2 vT e1

)∥∥∥
2

= ‖b‖2 |uj+1,1|.

Since uj+1,1 is just the last entry in the accumulation of the various plane
rotations applied to e1, the cost of producing these values as the algorithm
proceeds is small, so deciding on the acceptability of an approximate solution at
each step in the GMRES algorithm is cheap.

When solving nonsingular symmetric systems Ax = b, a strategy similar
to the one that produced the GMRES algorithm can be adopted except that
the Lanczos procedure (p. 651) is used in place of the Arnoldi process (p. 653).
When this is done, the resulting algorithm is called MINRES (an acronym for
minimal residual algorithm), and, as you might guess, there is an increase in
computational efficiency when Lanczos replaces Arnoldi. Historically, MINRES
preceded GMRES.

Another Krylov method that deserves mention is the conjugate gradient

algorithm , presented by Magnus R. Hestenes and Eduard Stiefel in 1952, that
is used to solve positive definite systems.
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Example 7.11.7

Conjugate Gradient Algorithm. Suppose that An×nx = b �= 0 is a (real)
positive definite system, and suppose that the minimum polynomial of b with
respect to A is v(x) = xk −∑k−1

j=0 αjx
j so that the solution x is somewhere

in the Krylov space Kk (p. 654). The conjugate gradient algorithm emanated
from the observation that if A is positive definite, then the quadratic function

f(x) =
xTAx

2
− xTb

has as its gradient

∇f(x) = Ax− b,

and there is a unique minimizer for f that happens to be the solution of Ax = b.
Consequently, any technique that attempts to minimize f is a technique that
attempts to solve Ax = b. Since the x is somewhere in Kk, it makes sense
to try to minimize f over Kk. One approach for doing this is the method of

steepest descent in which a current approximation xj is updated by adding a
correction term directed along the negative gradient −∇f(xj) = b−Axj = rj
(the jth residual). In other words, let

xj+1 = xj + αjrj , and set αj =
rTj rj

rTj Arj

because this αj minimizes f(xj+1). In spite of the fact that successive residuals
are orthogonal (rTj+1rj = 0), the rate of convergence can be slow because as the
ratio of eigenvalues λmax(A)/λmin(A) becomes larger, the surface defined by f
becomes more distorted, and a negative gradient rj need not point in a direction
aimed anywhere near the lowest point on the surface. An ingenious mechanism
for overcoming this difficulty is to replace the search directions rj by directions
defined by vectors q1,q2, . . . that are conjugate to each other in the sense that
qTi Aqj = 0 for all i �= j (some authors say “A-orthogonal”). Starting with
x0 = 0, the idea is to begin by moving in the direction of steepest descent with

x1 = α1q1, where q1 = r0 = b and α1 =
rT0 r0
rT0 Ar0

,

but at the second step use a direction vector

q2 = r1 + β1q1, where β1 is chosen to force qT2 Aq1 = 0.

With a bit of effort you can see that β1 = rT1 r1/r
T
0 r0 does the job. Then set

x2 = x1 + α2q2, and recycle the process. The formal algorithm is as follows.
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Formal Conjugate Gradient Algorithm. To compute the solution to a pos-
itive definite linear system An×nx = b, start with x0 = 0, r0 = b, and
q1 = b, and iterate as indicated below.

For j = 1 to n
αj ← rTj−1rj−1/q

T
j Aqj (step size)

xj ← xj−1 + αjqj (approximate solution)
rj ← rj−1 − αjAqj (residual)

If ‖rj‖2 = 0 (or is satisfactorily small)

set x = xj , and quit

End If

βj ← rTj rj/r
T
j−1rj−1 (conjugation factor)

qj+1 ← rj + βjqj (search direction)

End For

It can be shown that vectors produced by this algorithm after j steps are such
that (in exact arithmetic)

span {x1, . . . ,xj} = span {q1, . . . ,qj} = span {r0, r1, . . . , rj−1} = Kj ,

and, in addition to having qiAqj = 0 for i < j, the residuals are orthogonal—
i.e., rTi rj = 0 for i < j. Furthermore, the algorithm will find the solution in
k ≤ n steps.

As mentioned earlier, Krylov solvers such as GMRES and the conjugate
gradient algorithm produce the solution of Ax = b in k ≤ n steps (in exact
arithmetic), so, at first glance, this looks like good news. But in practice n can
be prohibitively large, and it’s not rare to have k = n. Consequently, Krylov
algorithms are often viewed as iterative methods that are terminated long before
n steps have been completed. The challenge in applying Krylov solvers (as well as
iterative methods in general) revolves around the issue of how to replace Ax = b
with an equivalent preconditioned system M−1Ax =M−1b that requires
only a small number of iterations to deliver a reasonably accurate approximate
solution. Building effective preconditioners M−1 is part science and part art,
and the techniques vary from algorithm to algorithm.

Classical linear stationary iterative methods (p. 620) are formed by splitting
A = M − N and setting x(k) = Hx(k − 1) + d, where H = M−1N and
d =M−1b. This is a preconditioning technique because the effect is to replace
Ax = b by M−1Ax = M−1b, where M−1A = I −H such that ρ (H) < 1.
The goal is to find an easily inverted M (in the sense that Md = b is easily
solved) that drives the value of ρ (H) down far enough to insure a satisfactory
rate of convergence, and this is a delicate balancing act.
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The goal in preconditioning Krylov solvers is somewhat different. For ex-
ample, if k = deg v(x) is the degree of the minimum polynomial of b with
respect to A, then GMRES sorts through Kk to find the solution of Ax = b
in k steps. So the aim of preconditioning GMRES might be to manipulate the
interplay between M−1b and M−1A to insure that the degree of minimum
polynomial ṽ(x) of M−1b with respect to M−1A is significantly smaller than
k. Since this is difficult to do, an alternate goal is to try to reduce the degree
of the minimum polynomial m̃(x) for M−1A because driving down deg m̃(x)
also drives down deg ṽ(x)—remember, ṽ(x) is a divisor of m̃(x) (p. 647). If a
preconditioner M−1 can be found to force M−1A to be diagonalizable with
only a few distinct eigenvalues (say j of them), then deg m̃(x) = j (p. 645),
and GMRES will find the solution in no more than j steps. But this too is an
overly ambitious goal for practical problems. In reality this objective is compro-
mised by looking for a preconditioner such that M−1A is diagonalizable whose
eigenvalues fall into a few small clusters—say j of them. The hope is that if
M−1A is diagonalizable, and if the diameters of the clusters are small enough,
then M−1A will behave numerically like a diagonalizable matrix with j distinct
eigenvalues, so GMRES is inclined to produce reasonably accurate approxima-
tions in no more than j steps. While the intuition is simple, subtleties involving
the magnitudes of eigenvalues, separation of clusters, and the meaning of “small
diameter” complicate the picture to make definitive statements and rigorous ar-
guments difficult to formulate. Constructing good preconditioners and proving
they actually work as advertised remains an active area of research in the field
of numerical analysis.

Only the tip of the iceberg concerning practical applications of Krylov meth-
ods is revealed in this section. The analysis required to more fully understand the
numerical behavior of various Krylov methods can be found in several excellent
advanced texts specializing in matrix computations.

Exercises for section 7.11

7.11.1. Determine the minimum polynomial for A =

(
5 1 2

−4 0 −2
−4 −1 −1

)
.

7.11.2. Find the minimum polynomial of b = (−1, 1, 1)T with respect to the
matrix A given in Exercise 7.11.1.

7.11.3. Use Krylov’s method to determine the characteristic polynomial for the
matrix A given in Exercise 7.11.1.

7.11.4. What is the Jordan form for a matrix whose minimum polynomial
is m(x) = (x − λ)(x − µ)2 and whose characteristic polynomial is
c(x) = (x− λ)2(x− µ)4?
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7.11.5. Use the technique described in Example 7.11.1 (p. 643) to determine the

minimum polynomial for A =




−7 −4 8 −8
−4 −1 4 −4

−16 −8 17 −16
−6 −3 6 −5


.

7.11.6. Explain why similar matrices have the same minimum and characteristic
polynomials.

7.11.7. Show that two matrices can have the same minimum and characteristic
polynomials without being similar by considering A =

(
N 0
0 N

)
and

B =
(

N 0
0 0

)
, where N =

(
0 1
0 0

)
.

7.11.8. Prove that if A and B are nonderogatory matrices that have the same
characteristic polynomial, then A is similar to B.

7.11.9. Use the Lanczos algorithm to find an orthogonal matrix P such that

PTAP = T is tridiagonal, where A =

(
2 1 1
1 2 1
1 1 2

)
.

7.11.10. Starting with x0 = 0, apply the conjugate gradient algorithm to solve

Ax = b, where A =

(
2 1 1
1 2 1
1 1 2

)
and b =

(
4
0
0

)
.

7.11.11. Use Arnoldi’s algorithm to find an orthogonal matrix Q such that

QTAQ = H is upper Hessenberg, where A =

(
5 1 2

−4 0 −2
−4 −1 −1

)
.

7.11.12. Use GMRES to solve Ax = b for A =

(
5 1 2

−4 0 −2
−4 −1 −1

)
and b =

(
1
2
1

)
.



CHAPTER 8

Perron–Frobenius
Theory of

Nonnegative Matrices

8.1 INTRODUCTION

A ∈ ℜm×n is said to be a nonnegative matrix whenever each aij ≥ 0, and
this is denoted by writing A ≥ 0. In general, A ≥ B means that each aij ≥ bij .

Similarly, A is a positive matrix when each aij > 0, and this is denoted by
writing A > 0. More generally, A > B means that each aij > bij .

Applications abound with nonnegative and positive matrices. In fact, many
of the applications considered in this text involve nonnegative matrices. For
example, the connectivity matrix C in Example 3.5.2 (p. 100) is nonnegative.
The discrete Laplacian L from Example 7.6.2 (p. 563) leads to a nonnegative
matrix because (4I − L) ≥ 0. The matrix eAt that defines the solution of
the system of differential equations in the mixing problem of Example 7.9.7
(p. 610) is nonnegative for all t ≥ 0. And the system of difference equations
p(k) = Ap(k − 1) resulting from the shell game of Example 7.10.8 (p. 635) has
a nonnegative coefficient matrix A.

Since nonnegative matrices are pervasive, it’s natural to investigate their
properties, and that’s the purpose of this chapter. A primary issue concerns
the extent to which the properties A > 0 or A ≥ 0 translate to spectral
properties—e.g., to what extent does A have positive (or nonnegative) eigen-
values and eigenvectors?

The topic is called the “Perron–Frobenius theory” because it evolved from
the contributions of the German mathematicians Oskar (or Oscar) Perron

89

and

89

Oskar Perron (1880–1975) originally set out to fulfill his father’s wishes to be in the family busi-


