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1.5 Elementary Matrices

1.5.1 De�nitions and Examples

The transformations we perform on a system or on the corresponding augmented
matrix, when we attempt to solve the system, can be simulated by matrix
multiplication. More precisely, each of the three transformations we perform
on the augmented matrix can be achieved by multiplying the matrix on the
left (pre-multiply) by the correct matrix. The correct matrix can be found by
applying one of the three elementary row transformation to the identity matrix.
Such a matrix is called an elementary matrix. More precisely, we have the
following de�nition:

De�nition 95 An elementary matrix is an n � n matrix which can be ob-
tained from the identity matrix In by performing on In a single elementary row
transformation.

Example 96

24 0 1 0
1 0 0
0 0 1

35 is an elementary matrix. It can be obtained by

switching rows 1 and 2 of the identity matrix. In other words, we are performing
on the identity matrix (R1)$ (R2).

Example 97

24 1 0 0
0 5 0
0 0 1

35 is an elementary matrix. It can be obtained by

multiplying row 2 of the identity matrix by 5. In other words, we are performing
on the identity matrix (5R2)! (R2).

Example 98

24 1 0 0
0 1 0
�2 0 1

35 is an identity matrix. It can be obtained by re-
placing row 3 of the identity matrix by row 3 plus �2 times row 1. In other
words, we are performing on the identity matrix (R3 � 2R1)! (R3).

Since there are three elementary row transformations, there are three di¤er-
ent kind of elementary matrices. They will be described in more details below.
Elementary matrices are important because they can be used to simulate the
elementary row transformations. If we want to perform an elementary row
transformation on a matrix A, it is enough to pre-multiply A by the elemen-
tary matrix obtained from the identity by the same transformation. This is
illustrated below for each of the three elementary row transformations.

1.5.2 Elementary Matrices and Elementary Row Opera-
tions

Interchanging Two Rows (Ri)$ (Rj)

Proposition 99 To interchange rows i and j of matrix A, that is to simulate
(Ri)$ (Rj), we can pre-multiply A by the elementary matrix obtained from the
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identity matrix in which rows i and j have been interchanged. In other words,
we have performed on the identity matrix the transformation we want to perform
on A.

Example 100 What should we pre-multiply A =

2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775 by
if we want to interchange rows 1 and 3?

We start with the 4 � 4 identity matrix

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 ;we then interchange

rows 1 and 3 in it to obtain

2664
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3775. This is the desired elementary
matrix. We can check that if we pre-multiply A by this matrix, the resulting
matrix will be A in which rows 1 and 3 have been interchanged.2664

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3775
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775 =
2664
a31 a32 a33 a34
a21 a22 a23 a24
a11 a12 a13 a14
a41 a42 a43 a44

3775
Multiplying a Row by a Constant (mRi)$ (Ri)

Proposition 101 To multiply row i of matrix A by a number m, that is to
simulate (mRi) $ (Ri), we can pre-multiply A by the elementary matrix ob-
tained from the identity matrix in which row i has been multiplied by m. In
other words, we have performed on the identity matrix the transformation we
want to perform on A.

Example 102 What should we pre-multiply A =

2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775 by
if we want to multiply row 3 by m?

We start with the 4� 4 identity matrix

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 ;we then multiply row

3 by m to obtain

2664
1 0 0 0
0 1 0 0
0 0 m 0
0 0 0 1

3775. This is the desired elementary matrix. We
can check that if we pre-multiply A by this matrix, the resulting matrix will be
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A in which row 3 has been multiplied by m.2664
1 0 0 0
0 1 0 0
0 0 m 0
0 0 0 1

3775
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775 =
2664

a11 a12 a13 a14
a21 a22 a23 a24
ma31 ma32 ma33 ma34
a41 a42 a43 a44

3775
Remark 103 To actually create the matrix which performs (mRi)$ (Ri), we
do not need to perform the same operation on the identity matrix. It would be
a waste of time and computations as most of the entries of the identity matrix
are 0. We can see that it is enough to do the following:

1. Generate the identity matrix of the correct size. Call it B = (bij). Then,
we have bii = 1 8i and bij = 0 if i 6= j.

2. Set bii = m where i is the index of the row a¤ected by the transformation.

Replacing a Row by Itself Plus a Multiple of Another (Rj +mRi) $
(Rj)

Proposition 104 To simulate (Rj +mRi)$ (Rj) on a matrix A, we can pre-
multiply A by the elementary matrix obtained from the identity matrix in which
the same transformation has been applied.

Example 105 What should we pre-multiply A =

2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775 by
if we want to simulate (R3 +mR1)$ (R3)?

We start with the 4�4 identity matrix

2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 ;we then apply (R3 +mR1)$

(R3) to it to obtain

2664
1 0 0 0
0 1 0 0
m 0 1 0
0 0 0 1

3775. This is the desired matrix. We can check
that if we pre-multiply A by this matrix, the resulting matrix will be A in which
(R3 +mR1)$ (R3) has been performed.2664

1 0 0 0
0 1 0 0
m 0 1 0
0 0 0 1

3775
2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775

=

2664
a11 a12 a13 a14
a21 a22 a23 a24

ma11 + a31 ma12 + a32 ma13 + a33 ma14 + a34
a41 a42 a43 a44

3775
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Remark 106 To actually create the matrix which performs (Rj +mRi) $
(Rj), we do not need to perform the same operation on the identity matrix.
It would be a waste of time and computations as most of the entries of the
identity matrix are 0. We can see that it is enough to do the following:

1. Generate the identity matrix of the correct size. Call it B = (bij). Then,
we have bii = 1 8i and bij = 0 if i 6= j.

2. Set bji = m where j and i are the indexes of the rows a¤ected by the
transformation.

1.5.3 Some Properties of Elementary Matrices

Theorem 107 The elementary matrices are nonsingular. Furthermore, their
inverse is also an elementary matrix. That is, we have:

1. The inverse of the elementary matrix which interchanges two rows is itself.

For example, the inverse of

2664
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3775 is the matrix
2664
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3775
as the computation below shows.2664

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3775
2664
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3775 =
2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
2. The inverse of the elementary matrix which simulates (mRi) $ (Ri) is

the elementary matrix which simulates
�
1

m
Ri

�
$ (Ri). For example,

the inverse of

2664
1 0 0 0
0 1 0 0
0 0 m 0
0 0 0 1

3775 is the matrix
26664
1 0 0 0
0 1 0 0

0 0
1

m
0

0 0 0 1

37775 as the
computation below shows.2664

1 0 0 0
0 1 0 0
0 0 m 0
0 0 0 1

3775
26664
1 0 0 0
0 1 0 0

0 0
1

m
0

0 0 0 1

37775 =
2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
3. The inverse of the elementary matrix which simulates (Rj +mRi)$ (Rj)
is the elementary matrix which simulates (Rj �mRi)$ (Rj). For exam-

ple, the inverse of the matrix

2664
1 0 0 0
0 1 0 0
m 0 1 0
0 0 0 1

3775, is the matrix
2664

1 0 0 0
0 1 0 0
�m 0 1 0
0 0 0 1

3775.
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Since inverses are unique, the computation below proves it.2664
1 0 0 0
0 1 0 0
m 0 1 0
0 0 0 1

3775
2664

1 0 0 0
0 1 0 0
�m 0 1 0
0 0 0 1

3775 =
2664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
Remark 108 To simulate one of the three transformations on a matrix, we pre-
multiply the matrix by another matrix which is obtained from the identity matrix
by applying the same transformation to it. If instead of pre-multiplying we post-
multiply, that is multiply on the right, the transformation would be applied on
the columns, not on the rows.

1.5.4 Gaussian Elimination and Elementary Matrices

When we transform a matrix in row-echelon form using Gaussian elimination,
we do it by applying several elementary row operations. Therefore, this can
be simulated by using elementary matrices. Rather than explaining how this
is done in general; the notation gets complicated. We illustrate the technique
with a speci�c example.

Example 109 Write the matrix A below in row-echelon form

A =

24 1 3 5
2 1 1
1 5 3

35
The �rst step in the Gauss transformation is to set to 0 the entries below a11.
This is done in two steps. First, we want to set a21 to 0. For this, we want to
simulate (R2 � 2R1)! (R2) therefore, we use the matrix

E1 =

24 1 0 0
�2 1 0
0 0 1

35
with pre-multiplication. You will notice that if we let A1 = E1A, then

A1 =

24 1 3 5
0 �5 �9
1 5 3

35
Then, we want to set a31 to 0. For this, we want to simulate (R3 �R1)! (R3)
therefore, we use the matrix

E2 =

24 1 0 0
0 1 0
�1 0 1

35



1.5. ELEMENTARY MATRICES 45

with pre-multiplication. You will notice that if we let A2 = E1A1, then

A2 =

24 1 3 5
0 �5 �9
0 2 �2

35
We have managed to set to 0 the entries below a11. Next, we set a32 to 0. For

this, we want to simulate
�
R3 +

2

5
R2

�
! (R3) therefore, we use the matrix

E3 =

264 1 0 0
0 1 0

0
2

5
1

375
with pre-multiplication. You will notice that if we let A3 = E3A2, then

A3 =

264 1 3 5
0 �5 �9
0 0 �28

5

375
Next, we want to set a33 to 1. For this, we want to simulate

�
� 5
28
R3

�
! (R3)

therefore, we use the matrix

E4 =

264 1 0 0
0 1 0

0 0 � 5
28

375
with pre-multiplication. You will notice that if we let A4 = E4A3, then

A4 =

24 1 3 5
0 �5 �9
0 0 1

35
Finally, we want to set a22 to 1. For this, we want to simulate

�
�1
5
R2

�
! (R2)

therefore, we use the matrix

E5 =

264 1 0 0

0 �1
5

0

0 0 1

375
with pre-multiplication. You will notice that if we let A5 = E5A4, then

A5 =

264 1 3 5

0 1
9

5
0 0 1

375
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Remark 110 In the above example, we have created a sequence of matrices
A;A1; A2; A3; A4; A5 de�ned as follows

A1 = E1A

A2 = E2A1 = E2E1A

A3 = E3A2 = E3E2E1A

A4 = E4A3 = E4E3E2E1A

A5 = E5A4 = E5E4E3E2E1A

where the matrices E1; :::; E5 are elementary matrices. This is what always
happens when doing Gaussian elimination. We begin with some matrix A. We
pre-multiply it with several elementary matrices E1; :::; Ek until the resulting
matrix Ak where

Ak = EkEk�1:::E2E1A

is in row-echelon form.

De�nition 111 Let A and B be m � n matrices. We say that B is row-
equivalent to A if there exists a �nite number of elementary matrices E1; :::; Ek
such that

B = EkEk�1:::E2E1A

When we �nd the inverse of a square matrix A, we transform it into the
identity matrix using elementary row transformations. In other words, we �nd
a �nite number of elementary matrices E1; :::; Ek such that

I = EkEk�1:::E2E1A

Therefore, we have the following theorem:

Theorem 112 A square matrix A is invertible if and only if it can be written
as the product of elementary matrices.
Proof. We need to prove both directions.

1. Let us assume that A is invertible. Then, as noted above we have I =
EkEk�1:::E2E1A. Therefore,

A = (EkEk�1:::E2E1)
�1

. As noted above, elementary matrices are invertible and since the inverse
of a product is the product of the inverses in reverse order, we have

A = E�11 E�12 :::E�1k�1E
�1
k

Since the inverse of an elementary matrix is itself an elementary matrix,
this direction of the result is proven.

2. Let us assume that A is the product of elementary matrices. We know
that elementary matrices are invertible. We also know that the product of
invertible matrices is also invertible. It follows that A is invertible.
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Gathering all the information we know about inverses, systems, elementary
matrices, we have the following theorem:

Theorem 113 If A is an n�n matrix, then the following statements are equiv-
alent:

1. A is invertible.

2. Ax = b has a unique solution for any n� 1 column matrix b.

3. Ax = 0 has only the trivial solution.

4. A is row equivalent to In.

5. A can be written as the product of elementary matrices.

1.5.5 A Method for Inverting Matrices

Given an n � n matrix A which is nonsingular (we assume it has an inverse),
how do we �nd its inverse? Answering this question amounts to �nding an n�n
matrix B satisfying

AB = I

where I is the identity matrix of the correct size. We introduce the following
notation:

A =

2664
a11 a12 ::: a1n
a21 a22 ::: a2n
::: ::: :: :::
an1 an2 ::: ann

3775

B =

2664
b11 b12 ::: b1n
b21 b22 ::: b2n
::: ::: :: :::
bn1 bn2 ::: bnn

3775
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Thus, solving AB = I amounts to �nding the entries (bij). Also, we let Bj
denote the jth column of B. In other words,

B1 =

2664
b11
b21
:::
bn1

3775

B2 =

2664
b12
b22
:::
bn2

3775
:::

Bn =

2664
b1n
b2n
:::
bnn

3775
Similarly, we let Ij denote the jth column of I. So,

I1 =

2664
1
0
:::
0

3775

I2 =

2664
0
1
:::
0

3775
:::

In =

2664
0
0
:::
1

3775
.
Then, we see that solving the equation

AB = I

is the same as solving2664
a11 a12 ::: a1n
a21 a22 ::: a2n
::: ::: :: :::
an1 an2 ::: ann

3775
2664
b11 b12 ::: b1n
b21 b22 ::: b2n
::: ::: :: :::
bn1 bn2 ::: bnn

3775 =
2664
1 0 ::: 0
0 1 ::: 0
::: ::: :: :::
0 0 ::: 1

3775
This matrix equation is equivalent to solving the n systems

ABj = Ij for j = 1; 2; :::; n
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We know how to solve each of these systems, for example using Gauss-Jordan
elimination. Since the transformations involved in Gauss-Jordan elimination
only depend on the coe¢ cient matrix A, we will realize that we are repeating a
lot of the work if we solve the n systems. It is more e¢ cient to do the following:

1. Form the matrix [A : I] by adjoining A and I. Note it will be an n � 2n
matrix.

2. If possible, row reduce A to I using Gauss-Jordan elimination on the
entire matrix [A : I]. The result will be the matrix

�
I : A�1

�
. If this is

not possible, then A does not have an inverse.

We illustrate the procedure by doing some examples.

Example 114 Find the inverse of A =

24 2 �17 11
�1 11 �7
0 3 �2

35
In other words, we want to �nd B =

24 b11 b12 b13
b21 b22 b23
b31 b32 b33

35 such that AB = I. We
begin by adjoining the identity matrix to A to obtain:26664

2 �17 11
... 1 0 0

�1 11 �7
... 0 1 0

0 3 �2
... 0 0 1

37775
We then row reduce A to the identity matrix by performing Gauss-Jordan elimi-

nation to the whole matrix. The transformation
�
E2 +

1

2
E1

�
! (E2) produces

266664
2 �17 11

... 1 0 0

0
5

2
�3
2

...
1

2
1 0

0 3 �2
... 0 0 1

377775
The transformation (2E2)! (E2) produces26664

2 �17 11
... 1 0 0

0 5 �3
... 1 2 0

0 3 �2
... 0 0 1

37775
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The transformation
�
E3 �

3

5
E2

�
! (E3) produces

266664
2 �17 11

... 1 0 0

0 5 �3
... 1 2 0

0 0 �1
5

... �3
5
�6
5

1

377775
The transformation (�5E3)! (E3) produces26664

2 �17 11
... 1 0 0

0 5 �3
... 1 2 0

0 0 1
... 3 6 �5

37775
The transformation (E2 + 3E3)! (E2) produces26664

2 �17 11
... 1 0 0

0 5 0
... 10 20 �15

0 0 1
... 3 6 �5

37775
The transformation

�
1

5
E2

�
! (E2) produces

26664
2 �17 11

... 1 0 0

0 1 0
... 2 4 �3

0 0 1
... 3 6 �5

37775
The transformation (E1 � 11E3)! (E1) produces26664

2 �17 0
... �32 �66 55

0 1 0
... 2 4 �3

0 0 1
... 3 6 �5

37775
The transformation (E1 + 17E2)! (E1) produces26664

2 0 0
... 2 2 4

0 1 0
... 2 4 �3

0 0 1
... 3 6 �5

37775
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Finally, the transformation
�
1

2
E1

�
! (E1) produces26664

1 0 0
... 1 1 2

0 1 0
... 2 4 �3

0 0 1
... 3 6 �5

37775
So,

A�1 =

24 1 1 2
2 4 �3
3 6 �5

35
Example 115 Find the inverse of B =

24 1 �2 1
2 �3 0
�1 3 �3

35.
We begin by adjoining the identity matrix to B. We obtain26664

1 �2 1
... 1 0 0

2 �3 0
... 0 1 0

�1 3 �3
... 0 0 1

37775
Next, we try to row reduce B to the identity matrix by applying Gauss-Jordan
elimination to the whole matrix. Performing (E2 � 2E1)! (E2) produces26664

1 �2 1
... 1 0 0

0 1 �2
... �2 1 0

�1 3 �3
... 0 0 1

37775
Performing (E3 + E1)! (E3) produces26664

1 �2 1
... 1 0 0

0 1 �2
... �2 1 0

0 1 �2
... 1 0 1

37775
The transformation (E3 � E2)! (E3) produces26664

1 �2 1
... 1 0 0

0 1 �2
... �2 1 0

0 0 0
... 3 �1 1

37775
We do not need to continue, the last row of what used to be B consists entirely
of 00s. B does not have an inverse. Another way of saying this is that B is
singular.
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We �nish this section by revisiting a theorem about the cancellation laws.

Theorem 116 If C is an invertible matrix, then the following is true.

1. If AC = BC, then A = B. This is called the right cancellation property.

2. If CA = CB, then A = B. This is called the left cancellation property.

Proof. To prove part 1, we use the fact that C is invertible

AC = BC ) (AC)C�1 = (BC)C�1

) A
�
CC�1

�
= B

�
CC�1

�
) AI = BI

) A = B

Part 2 is proven the same way.

Remark 117 1. We must list the right and left cancellation properties. Be-
cause matrix multiplication is not commutative, having one of them does
not necessarily imply that the other one is also true.

2. When it comes to the cancellation property, matrices behave like real num-
bers. The cancellation property for real numbers says that ac = bc) a = b
if c 6= 0. This is the same as saying ac = bc) a = b if c has an inverse,
because, for real numbers, only 0 does not have an inverse. That is exactly
what the cancellation property for matrices says.

1.6 Problems

1. Using your knowledge of diagonal matrices and inverse matrices, �nd a
general formula for the inverse of a diagonal matrix. Do all diagonal
matrices have an inverse?

2. Decide whether each statement below is True or False. Justify your answer
by citing a theorem, or giving a counter example.

(a) If A is invertible, then the system Ax = b is consistent.

(b) If A is not invertible, then the system Ax = b is consistent.

(c) If A is not invertible, then the system Ax = b is not consistent.

(d) If A is not invertible, then the system Ax = 0 is consistent.

(e) If A is not invertible, then the system Ax = 0 is not consistent.

3. On page 57 - 59, do the following problems: 1, 2, 5, 6, 9, 10, 11, 12, 18,
21.




