
Chapter 6

Linear Transformation

6.1 Intro. to Linear Transformation

Homework: [Textbook, §6.1 Ex. 3, 5, 9, 23, 25, 33, 37, 39 ,53, 55,
57, 61(a,b), 63; page 371-].

In this section, we discuss linear transformations.
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190 CHAPTER 6. LINEAR TRANSFORMATION

Recall, from calculus courses, a funtion

f : X → Y

from a set X to a set Y associates to each x ∈ X a unique element
f(x) ∈ Y. Following is some commonly used terminologies:

1. X is called the domain of f.

2. Y is called the codomain of f.

3. If f(x) = y, then we say y is the image of x. The preimage of y
is

preimage(y) = {x ∈ X : f(x) = y}.

4. The range of f is the set of images of elements in X.

In this section we deal with functions from a vector sapce V to
another vector space W, that respect the vector space structures. Such
a function will be called a linear transformation, defined as follows.

Definition 6.1.1 Let V and W be two vector spaces. A function

T : V → W

is called a linear transformation of V into W, if following two prper-

ties are true for all u,v ∈ V and scalars c.

1. T (u+v) = T (u)+T (v). (We say that T preserves additivity.)

2. T (cu) = cT (u). (We say that T preserves scalar multiplica-

tion.)

Reading assignment Read [Textbook, Examples 1-3, p. 362-].

Trivial Examples: Following are two easy exampes.
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1. Let V,W be two vector spaces. Define T : V → W as

T (v) = 0 for all v ∈ V.

Then T is a linear transformation, to be called the zero trans-
formation.

2. Let V be a vector space. Define T : V → V as

T (v) = v for all v ∈ V.

Then T is a linear transformation, to be called the identity
transformation of V.

6.1.1 Properties of linear transformations

Theorem 6.1.2 Let V and W be two vector spaces. Suppose T : V →
W is a linear transformation. Then

1. T (0) = 0.

2. T (−v) = −T (v) for all v ∈ V.

3. T (u − v) = T (u) − T (v) for all u,v ∈ V.

4. If

v = c1v1 + c2v2 + · · · + cnvn

then

T (v) = T (c1v1 + c2v2 + · · · + cnvn) = c1T (v1)+c2T (v2)+· · ·+cnT (vn) .

Proof. By property (2) of the definition 6.1.1, we have

T (0) = T (00) = 0T (0) = 0.
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So, (1) is proved. Similarly,

T (−v) = T ((−1)v) = (−1)T (v) = −T (v).

So, (2) is proved. Then, by property (1) of the definition 6.1.1, we have

T (u − v) = T (u + (−1)v) = T (u) + T ((−1)v) = T (u) − T (v).

The last equality follows from (2). So, (3) is proved.

To prove (4), we use induction, on n. For n = 1 : we have T (c1v1) =
c1T (v1), by property (2) of the definition 6.1.1.

For n = 2, by the two properties of definition 6.1.1, we have

T (c1v1 + c2v2) = T (c1v1) + T (c2v2) = c1T (v1) + c2T (v2).

So, (4) is prove for n = 2. Now, we assume that the formula (4) is valid
for n − 1 vectors and prove it for n. We have

T (c1v1 + c2v2 + · · · + cnvn) = T (c1v1 + c2v2 + · · · + cn−1vn−1)+T (cnvn)

= (c1T (v1) + c2T (v2) + · · · + cn−1T (vn−1)) + cnT (vn).

So, the proof is complete.

6.1.2 Linear transformations given by matrices

Theorem 6.1.3 Suppose A is a matrix of size m × n. Given a vector

v =













v1

v2

· · ·
vn













∈ R
n define T (v) = Av = A













v1

v2

· · ·
vn













.

Then T is a linear transformation from R
n to R

m.
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Proof. From properties of matrix multiplication, for u,v ∈ R
n and

scalar c we have

T (u + v) = A(u + v) = A(u) + A(v) = T (u) + T (v)

and
T (cu) = A(cu) = cAu = cT (u).

The proof is complete.

Remark. Most (or all) of our examples of linear transformations come
from matrices, as in this theorem.

Reading assignment Read [Textbook, Examples 2-10, p. 365-].

6.1.3 Projections along a vector in R
n

Projections in R
n is a good class of examples of linear transformations.

We define projection along a vector.

Recall the definition 5.2.6 of orthogonal projection, in the context
of Euclidean spaces R

n.

Definition 6.1.4 Suppose v ∈ R
n is a vector. Then,

for u ∈ R
n define projv(u) =

v · u
‖ v ‖2

v

1. Then projv : R
n → R

n is a linear transformation.

Proof. This is because, for another vector w ∈ R
n and a scalar

c, it is easy to check

projv(u+w) = projv(u)+projv(w) and projv(cu) = c (projv(u)) .

2. The point of such projections is that any vector u ∈ R
n can be

written uniquely as a sum of a vector along v and another one

perpendicular to v:

u = projv(u) + (u − projv(u)) .
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It is easy to check that (u − projv(u)) ⊥ projv(u).

Exercise 6.1.5 (Ex. 4, p. 371) Let

T (v1, v2, v3) = (2v1 + v2, 2v2 − 3v1, v1 − v3)

1. Compute T (−4, 5, 1).

Solution:

T (−4, 5, 1) = (2∗(−4)+5, 2∗5−3∗(−4),−4−1) = (−3, 22,−5).

2. Compute the preimage of w = (4, 1,−1).

Solution: Suppose (v1, v2, v3) is in the preimage of (4, 1,−1).

Then

(2v1 + v2, 2v2 − 3v1, v1 − v3) = (4, 1,−1).

So,

2v1 +v2 = 4

2v2 −3v3 = 1

v1 −v3 = −1

The augmented matrix of this system is







2 1 0 4

0 2 −3 1

1 0 −1 −1






its Gauss−Jordan form







1 0 0 .5714

0 1 0 2.85714

0 0 1 1.5714







So,

Preimage((4, 1,−1)) = {(.5714, 2.85714, 1.5714)}.
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Exercise 6.1.6 (Ex. 10. p. 371) Determine whether the function

T : R
2 → R

2 T (x, y) = (x2, y) is linear?

Solution: We have

T ((x, y) + (z, w)) = T (x + z, y + w) = ((x + z)2, y + w)

6= (x2, y) + (z2, w) = T (x, y) + T (z, w).

So, T does not preserve additivity. So, T is not linear.

Alternately, you could check that T does not preserve scalar multi-

plication.

Alternately, you could check this failure(s), numerically. For example,

T ((1, 1) + (2, 0)) = T (3, 1) = (9, 1) 6= T (1, 1) + T (2, 0).

Exercise 6.1.7 (Ex. 24, p. 371) Let T : R
3 → R

3 be a linear trans-

formation such that

T (1, 0, 0) = (2, 4,−1), T (0, 1, 0) = (1, 3,−2), T (0, 0, 1) = (0,−2, 2).

Compute T (−2, 4,−1).

Solution: We have

(−2, 4,−1) = −2(1, 0, 0) + 4(0, 1, 0) − (0, 0, 1).

So, T (−2, 4,−1) =

−2T (1, 0, 0)+4T (0, 1, 0)−T (0, 0, 1) = (2, 4,−1)+(1, 3,−2)+(0,−2, 2) = (3, 5,−1).

Remark. A linear transformation T : V → V can be defined, simply

by assigning values T (vi) for any basis {v1,v2, . . . ,vn} of V. In this

case of the our problem, values were assigned for the standard basis

{e1, e2, e3} of R
3.
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Exercise 6.1.8 (Ex. 38, p. 372) Let

A =

[

−1 2 1 3 4

0 0 2 −1 0

]

. Let T : R
5 → R

2

be the linear transformation T (x) = Ax.

1. Compute T (1, 0,−1, 3, 0).

Solution:

T (1, 0,−1, 3, 0) =

[

−1 2 1 3 4

0 0 2 −1 0

]

















1

0

−1

3

0

















=

[

7

−5

]

.

2. Compute preimage, under T, of (−1, 8).

Solution: The preimage consists of the solutions of the linear

system

[

−1 2 1 3 4

0 0 2 −1 0

]

















x1

x2

x3

x4

x5

















=

[

−1

8

]

The augmented matrix of this system is
[

−1 2 1 3 4 −1

0 0 2 −1 0 8

]

.

The Gauss-Jordan form is
[

1 −2 0 −3.5 −4 5

0 0 1 −.5 0 4

]

.



6.1. INTRO. TO LINEAR TRANSFORMATION 197

We use parameters x2 = t, x4 = s, x5 = u and the solotions are

given by

x1 = 5 + 2t + 3.5s + 4u, x2 = t, x3 = 4 + .5s, x4 = s, x5 = u

So, the preimage

T−1(−1, 8) = {(5+2t+3.5s+4u, t, 4+.5s, s, u) : t, s, u ∈ R}.

Exercise 6.1.9 (Ex. 54 (edited), p. 372) Let T : R
2 → R

2 be the

linear transformation such that T (1, 1) = (0, 2) and T (1,−1) = (2, 0).

1. Compute T (1, 4).

Solution: We have to write

(1, 4) = a(1, 1)+b(1,−1). Solving (1, 4) = 2.5(1, 1)−1.5(1,−1).

So,

T (1, 4) = 2.5T (1, 1)−1.5T (1,−1) = 2.5(0, 2)−1.5(2, 0) = (−3, 5).

2. Compute T (−2, 1).

Solution: We have to write

(−2, 1) = a(1, 1)+b(1,−1). Solving (−2, 1) = −.5(1, 1)−1.5(1,−1).

So,

T (−2, 1) = −.5T (1, 1)−1.5T (1,−1) = −.5(0, 2)−1.5(2, 0) = (−3,−1).

Exercise 6.1.10 (Ex. 61 (edited), p. 372) Let T : R
3 → R

3 the

projection T (u) = projv(u) where v = (1, 1, 1).
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1. Find T (x, y, z).

Solution: See definition 6.1.4.

projv(x, y, z) =
v · (x, y, z)

‖ v ‖2
v =

(1, 1, 1) · (x, y, z)

‖ (1, 1, 1) ‖2
(1, 1, 1) =

x + y + z

3
(1, 1, 1)

=

(

x + y + z

3
,
x + y + z

3
,
x + y + z

3

)

.

2. Compute T (5, 0, 5).

Solution: We have

T (5, 0, 5) =

(

x + y + z

3
,
x + y + z

3
,
x + y + z

3

)

=

(

10

3
,
10

3
,
10

3

)

.

3. Compute the matrix of T.

Solution: The matrix is given by

A =







1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3






,

because

T (x, y, z) =







1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3

1

3













x

y

z






.
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6.2 Kernel and Range of linear Transfor-

mation

We will essentially, skip this section. Before we do that, let us give a
few definitions.

Definition 6.2.1 Let V,W be two vector spaces and T : V → W a

linear transformation.

1. Then the kernel of T , denoted by ker(T ), is the set of v ∈ V such

that T (v) = 0. Notationally,

ker(T ) = {v ∈ V : T (v) = 0}.

It is easy to see the ker(T ) is a subspace of V.

2. Recall, range of T, denoted by range(T ), is given by

range(T ) = {v ∈ W : w = T (v) for some v ∈ V }.

It is easy to see the range(T ) is a subspace of W.

3. We say the T is isomorphism, if T is one-to-one and onto. It fol-

lows, that T is an isomorphism if ker(T ) = {0} and range(T ) =

W.
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6.3 Matrices for Linear Transformations

Homework: [Textbook, §6.3, Ex. 5, 7, 11, 13, 17, 19, 21, 23, 25, 29,

31, 33, 35(a,b), 37(a,b), 39, 43, 45, 47; p. 397 ]

Optional Homework: [Textbook, §6.3, Ex. 57, 59; p. 398]. (We will
not grade them.) In this section, to each linear transformation we

associate a matrix.

Linear transformations and matrices have very deep relationships.
In fact, study of linear transformations can be reduced to the study of
matrices and conversely. First, we will study this relationship for linear
transformations T : R

n → R
m; and later study the same for linear

transformations T : V → W of general vector spaces.

In this section, we will denote the vectors in R
n, as column matrices.

Recall, written as columns, the standard basis of R
n is given by

B = {e1, e2, . . . , en}























1
0

· · ·
0









,









0
1

· · ·
0









, · · · ,









0
0

· · ·
1









.















Theorem 6.3.1 Let T : R
n → R

m be a linear transformation. Write

T (e1) =













a11

a21

· · ·
am1













, T (e2) =













a12

a22

· · ·
am2













, · · · , T (en) =













a1n

a2n

· · ·
amn













.
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These columns T (e1), T (e2) . . . , T (en) form a m×n matrix A as follows,

A =













a11 a12 . . . a1n

a21 a22 . . . a2n

· · · · · · · · · · · ·
am1 am2 . . . amn













.

This matrix A has the property that

T (v) = Av for all v ∈ R
n.

This matrix A is called the standard matrix of T.

Proof. We can write v ∈ R
n as

v =









v1

v2

· · ·
vn









= v1e1 + v2e2 + · · · + vnen.

We have,

Av =









a11 a12 . . . a1n

a21 a22 . . . a2n

· · · · · · · · · · · ·
am1 am2 . . . amn

















v1

v2

· · ·
vn









= v1









a11

a21

· · ·
am1









+v2









a12

a22

· · ·
am2









+· · ·+vn









a1n

a2n

· · ·
amn









= v1T (e1)+v2T (e2)+· · ·+vnT (en) = T (v1e1 + v2e2 + · · · + vnen) = T (v).

The proof is complete.

Reading assignment: Read [Textbook, Examples 1,2; page 389-390].

In our context of linear transformations, we recall the following
definition of composition of functions.

Definition 6.3.2 Let

T1 : R
n → R

m, T2 : R
m → R

p
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be two linear transformations. Define the composition T : R
n → R

p

of T1 with T2 as

T (v) = T2(T1(v)) for v ∈ R
n.

The composition T is denoted by T = T2oT1. Diagramatically,

R
n

T=T2oT1 ""D

D

D

D

D

D

D

D

T1 //
R

m

T2

��
R

p.

Theorem 6.3.3 Suppose

T1 : R
n → R

m, T2 : R
m → R

p

are two linear transformations.

1. Then, the composition T = T2oT1 : R
n → R

p is a linear transfor-

mation.

2. Suppose A1 is the standard matrix of T1 and A2 is the standard

matrix of T2. Then, the standard matrix of the composition

T = T2oT1 is the product A = A2A1.

Proof. For u,v ∈ R
n and scalars c, we have

T (u+v) = T2(T1(u+v)) = T2(T1(u)+T1v)) = T2(T1(u))+T2T1(v)) = T (u)+T (v)

and

T (cu) = T2(T1(cu)) = T2(cT1(u)) = cT2(T1(u)) = cT (u).

So, T preserves addition and scalar multiplication. Therefore T is a
linear transformation and (1) is proved. To prove (2), we have

T (u) = T2(T1(u)) = T2(A1u) = A2(A1u) = (A2A1)u.
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Therefore T (e1) is the first column of A2A1, T (e2) is the second column
of A2A1, and so on. Therefore, the standard matrix of T is A2A1. The
proof is complete.

Reading assignment: Read [Textbook, Examples 3; page 392].

Definition 6.3.4 Let

T1 : R
n → R

n, T2 : R
n → R

n

be two linear transformations such that for every v ∈ R
n we have

T2(T1(v)) = v and T1(T2(v)) = v,

then we say that T2 is the inverse of T1, and we say that T1 is invert-

ible.

Such an inverse T2 of T1 is unique and is denoted by T−1

1 .

(Remark. Let End(Rn) denote the set of all linear transformations

T : R
n → R

n. Then End(Rn) has a binary operation by composition.

The identity operation I : R
n → R

n acts as the identitiy under this

composition operation. The definition of inverse of T1 above, just cor-

responds to the inverse under this composition operation.)

Theorem 6.3.5 Let T : R
n → R

n be a linear transformations and let

A be the standard matrix of T. Then, the following are equivalent,

1. T is invertible.

2. T is an isomorphism.

3. A is invertible.

And, if T is invertible, then the standard matrix of T−1 is A−1.
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Proof. (First, recall definition 6.2.1, that T is isomorphism if T is 1
to 1 and onto.)

(Proof of (1) ⇒ (2) :) Suppose T is invertible and T2 be the inverse.
Suppose T (u) = T (v). Then,

u = T2(T (u)) = T2(T (v)) = v.

So, T is 1 to 1. Also, given u ∈ R
n we have

u = T (T2(u)). So, T onto R
n.

So, T is an isomorphism.

(Proof of (2) ⇒ (3) :) So, assume T is an isomorphism. Then,

Ax = 0 ⇒ T (x) = T (0) ⇒ x = 0.

So, Ax = 0 has an unique solution. Therefore A is invertible and (3)
follows from (2).

(Proof of (3) ⇒ (1) :) Suppose A is invertible. Let T2(x) = A−1x,
then T2 is a linear transformation and it is easily checked that T2 is the
inverse of T. So, (1) follows from (3). The proof is complete.

Reading assignment: Read [Textbook, Examples 4; page 393].

6.3.1 Nonstandard bases and general vector spaces

The above discussion about (standard) matrices of linear transforma-
tions T had to be restricted to linear transformations T : R

n → R
m.

This wa sbecause R
n has a standard basis {e1, e2, . . . , en, } that we

could use.

Suppose T : V → W is a linear transformation between two abstract
vector spaces V,W. Since V and W has no standard bases, we cannot
associate a matrix to T. But, if we fix a basis B of V and B′ of W we
can associate a matrix to T. We do it as follows.
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Theorem 6.3.6 Suppose T : V → W is a linear transformation be-

tween two vector spaces V,W. Let

B = {v1,v2, . . . ,vn} be basis of V

and

B′ = {w1,w2, . . . ,wm} be basis of w.

We can write

T (v1) =
[

w1 w2 · · · wm

]













a11

a21

· · ·
am1













Writing similar equations for T (v2), . . . , T (vn), we get

[

T (v1) T (v2) · · · T (vn)
]

=
[

w1 w2 · · · wm

]













a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn













Then, for v = x1v1 + x2v2 + · · · + xnvn, We have

T (v) =
[

w1 w2 · · · wm

]













a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn

























x1

x2

· · ·
xn













.

Write A = [aij]. Then, T is determined by A, with respect to bases

B,B′.

Exercise 6.3.7 (Ex. 6, p. 397) Let

T (x, y, z) = (5x − 3y + z, 2z + 4y, 5x + 3y).
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What is the standard matrix of T?

Solution: We have T : R
3 → R

3. We write vectors x ∈ R
3 as columns

x =







x

y

z






instead of (x, y, z).

Recall the standard basis

e1 =







1

0

0






, e2 =







0

1

0






, e3 =







0

0

1






of R

3.

We have

T (e1) =







5

0

5






, T (e2) =







−3

4

3






, T (e3) =







1

2

0






.

So, the standard matrix of T is

A =







5 −3 1

0 4 2

5 3 0






.

Exercise 6.3.8 (Ex. 12, p. 397) Let

T (x, y, z) = (2x + y, 3y − z).

Write down the standard matrix of T and use it to find T (0, 1,−1).

Solution: In this case, T : R
3 → R

2. With standard basis e1, e2, e3 as

in exercise 6.3.7, we have

T (e1) =

[

2

0

]

, T (e2) =

[

1

3

]

, T (e3) =

[

0

−1

]

.
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So, the standard matrix of T is

A =

[

2 1 0

0 3 −1

]

.

Therefore,

T (0, 1,−1) = A







0

1

−1






=

[

2 1 0

0 3 −1

]







0

1

−1






=

[

1

4

]

.

We will write our answer in as a row: T (0, 1,−1) = (1, 4).

Exercise 6.3.9 (Ex. 18, p. 397) Let T be the reflection in the line

y = x in R
2. So, T (x, y) = (y, x).

1. Write down the standard matrix of T.

Solution: In this case, T : R
2 → R

2. With standard basis e1 =

(1, 0)T , e2 = (0, 1)T , we have

T (e1) =

[

0

1

]

, T (e2) =

[

1

0

]

.

So, the standard matrix of T is

A =

[

0 1

1 0

]

.

2. Use the standard matrix to compute T (3, 4).

Solution: Of course, we know T (3, 4) = (4, 3). They want use to

use the standard matrix to get the same answer. We have

T (3, 4) = A

[

3

4

]

=

[

0 1

1 0

][

3

4

]

=

[

4

3

]

or T (3, 4) = (4, 3).
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Lemma 6.3.10 Suppose T : R
2 → R

2 is the counterclockwise rotation

by a fixed angle θ. Then

T (x, y) =

[

cos θ − sin θ

sin θ cos θ

][

x

y

]

.

Proof. We can write

x = r cos φ, y = r sin φ, where r =
√

x2 + y2, tan φ = y/x.

By definition

T (x, y) = (r cos(φ + θ), r sin(φ + θ)) .

Using trig-formulas

r cos(φ + θ) = r cos φ cos θ − r sin φ sin θ = x cos θ − y sin θ

and

r sin(φ + θ) = r sin φ cos θ + r cos φ sin θ = y cos θ + x sin θ.

So,

T (x, y) =

[

cos θ − sin θ
sin θ cos θ

] [

x
y

]

.

The proof is complete.

Exercise 6.3.11 (Ex. 22, p. 397) Let T be the counterclockwise ro-

tation in R
2 by angle 120o.

1. Write down the standard matrix of T.

Solution: We use lemma 6.3.10, with θ = 1200. So, the standard

matrix of T is

A =

[

cos θ − sin θ

sin θ cos θ

]

=

[

cos 120 − sin 120

sin 120 cos 120

]

=

[

−.5 −
√

3

2√
3

2
−.5

]

.
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2. Compute T (2, 2).

Solution: We have

T (2, 2) = A

[

2

2

]

=

[

−.5 −
√

3

2√
3

2
−.5

] [

2

2

]

=

[

−1 −
√

3

−1 +
√

3

]

.

We write our answer as rows: T (2, 2) =
(

−1 −
√

3,−1 +
√

3
)

.

Exercise 6.3.12 (Ex. 32, p. 397) Let T be the projection on to the

vector w = (−1, 5) in R
2 : T (u) = projw(u).

1. Find the standard matrix.

Solution: See definition 6.1.4.

T (x, y) = projw(x, y) =
w · (x, y)

‖ w ‖2
w =

(1,−5) · (x, y)

‖ (1,−5) ‖2
(1,−5) =

x − 5y

26
(1,−5)

=

(

x − 5y

26
,
−5x + 25y

26

)

.

So, with e1 = (1, 0)T , e2 = (0, 1)T we have (write/think every-

thing as columns):

T (e1) =

[

1

26

− 5

26

]

, T (e2) =

[

− 5

26

25

26

]

So, the standard matrix is

A =

[

1

26
− 5

26

− 5

26

25

26

]

.

2. Compute T (2, 3).

Solution: We have

T (2, 3) = A

[

2

3

]

=

[

1

26
− 5

26

− 5

26

25

26

][

2

3

]

=

[

−.5
65

26

]

.

We write our answer in row-form: T (2, 3) =
(

−.5, 65

26

)

.
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Exercise 6.3.13 (Ex. 36, p. 397) Let

T (x, y, z) = (3x − 2y + z, 2x − 3y, y − 4z).

1. Write down the standard matrix of T.

Solution: with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T we

have (write/think everything as columns):

T (e1) =







3

2

0






, T (e2) =







−2

−3

1






, T (e2) =







1

0

−4






.

So, the standard matrix is

A =







3 −2 1

2 −3 0

0 1 −4






.

2. Compute T (2,−1,−1).

Solution: We have

T (2,−1,−1) = A







2

−1

−1






=







3 −2 1

2 −3 0

0 1 −4













2

−1

−1






=







7

7

3






.

Exercise 6.3.14 (Ex. 40, p. 397) Let

T1 : R
2 → R

2, T1(x, y) = (x − 2y, 2x + 3y)

and

T2 : R
2 → R

2, T2(x, y) = (y, 0).

Compute the standard matrices of T = T2oT1 and T ′ = T1T2.

Solution: We solve it in three steps:



6.3. MATRICES FOR LINEAR TRANSFORMATIONS 211

Step-1: First, compute the standard matrix of T1. With e1 = (1, 0)T , e2 =

(0, 1)T we have (write/think everything as columns):

T1(e1) =

[

1

2

]

, T1(e2) =

[

−2

3

]

So, the standard matrix of T1 is

A1 =

[

1 −2

2 3

]

.

Step-2: Now, compute the standard matrix of T2. With e1 = (1, 0)T , e2 =

(0, 1)T we have :

T2(e1) =

[

0

0

]

, T2(e2) =

[

1

0

]

So, the standard matrix of T2 is

A2 =

[

0 1

0 0

]

.

Step-3 By theorem 6.3.3, the standard matrix of T = T2T1 is

A2A1 =

[

0 1

0 0

] [

1 −2

2 3

]

=

[

2 3

0 0

]

. So, T (x, y) = (2x+3y, 0).

Similarly, the standard matrix of T ′ = T1T2 is

A1A2 =

[

1 −2

2 3

][

0 1

0 0

]

=

[

0 1

0 2

]

. So, T ′(x, y) = (y, 2y).

Exercise 6.3.15 (Ex. 46, p. 397) Determine whether

T (x, y) = (x + 2y, x − 2y).
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is invertible or not.

Solution: Because of theorem 6.3.5, we will check whether the stan-

dard matrix of T is invertible or not.

With e1 = (1, 0)T , e2 = (0, 1)T we have :

T (e1) =

[

1

1

]

, T (e2) =

[

2

−2

]

So, the standard matrix of T is

A =

[

1 2

1 −2

]

.

Note, det A = −4 6= 0. So, T is invertible and hence T is invertible.

Exercise 6.3.16 (Ex. 58, p. 397) Determine whether

T (x, y) = (x − y, 0, x + y).

Use B = {v1 = (1, 2),v2 = (1, 1)} as basis of the domain R
2 and

B′ = {w1 = (1, 1, 1),w2 = (1, 1, 0),w3 = (0, 1, 1)} as basis of codomain

R
3. Compute matrix of T with respect to B,B′.

Solution: We use theorem 6.3.6. We have

T (u1) = T (1, 2) = (−1, 0, 3), T (u2) = T (1, 1) = (0, 0, 2).

We solve the equation:

(−1, 0, 3) = aw1 + bw2 + cw3 = a(1, 1, 1) + b(1, 1, 0) + c(0, 1, 1)

and we have

(−1, 0, 3) = 2(1, 1, 1)−3(1, 1, 0)+1(0, 1, 1) =
[

w1 w2 w3

]







2

−3

1






.
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Similarly, we solve

(0, 0, 2) = aw1 + bw2 + cw3 = a(1, 1, 1) + b(1, 1, 0) + c(0, 1, 1)

and we have

(0, 0, 2) = 2(1, 1, 1)− 2(1, 1, 0) + 0(0, 1, 1) =
[

w1 w2 w3

]







2

−2

0






.

So, the matrix of T with respect to the bases B,B′ is

A =







2 2

−3 −2

1 0






.

6.4 Transition Matrices and Similarity

We will skip this section. I will just explain the section heading. You
know what are Transition matrices of a linear transformation T : V →
W. They are a matrices described in theorem 6.3.6.

Definition 6.4.1 Suppose A,B are two square matrices of size n× n.

We say A,B are similar, if A = P−1BP for some invertible matrix P.
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6.5 Applications of Linear Trans.

Homework: [Textbook, §6.5 Ex. 11 (a), 13 (a), 25, 27, 29, 35, 37, 39,
43, 49, 51, 53, 55, 63, 65; page 414-415].

In this section, we discuss geometric interpretations of linear trans-
formations represented by 2 × 2 elementary matrices.

Proposition 6.5.1 Let A be a 2 × 2 matrix and

T (x, y) = A

[

x

y

]

.

We will write the right hand side as a row, which is an abuse of natation.

1. If

A =

[

−1 0

0 1

]

, then T (x, y) = A

[

x

y

]

= (−x, y)T

represents the reflection in y−axis. See [Textbook, Example 1

(a), p.407] for the diagram.

2. If

A =

[

1 0

0 −1

]

, then T (x, y) = A

[

x

y

]

= (x,−y)T

represents the reflection in x−axis. See [Textbook, Example 1

(b), p.407] for the diagram.
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3. If

A =

[

0 1

1 0

]

, then T (x, y) = A

[

x

y

]

= (y, x)T

represents the reflection in line y = x. See [Textbook, Example 1

(c), p.407] for the diagram.

4. If

A =

[

k 0

0 1

]

, then T (x, y) = A

[

x

y

]

= (kx, y)T .

If k > 1, then T represents expansion in horizontal direction and

0 < k < 1, then T represents contraction in horizontal direction.

See [Textbook, Example 2 Fig 6.12 , p.409] for diagrams.

5. If

A =

[

1 0

0 k

]

, then T (x, y) = A

[

x

y

]

= (x, ky)T .

If k > 1, then T represents expansion in vertical direction and

0 < k < 1, then T represents contraction in vertical direction.

See [Textbook, Example 2 Fig 6.13, p.409] for diagrams.

6. If

A =

[

1 k

0 1

]

, then T (x, y) = A

[

x

y

]

= (x + ky, y)T .

Then T represents horizontal shear. (Assume k > 0.) The upper-

half plane are sheared to right and lower-half plane are sheared

to left. The points on the x−axis reamain fixed. See [Textbook,

Example 3, fig 6.14, p.409] for diagrams.
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7. If

A =

[

1 0

k 1

]

, then T (x, y) = A

[

x

y

]

= (x, kx + y)T .

Then T represents vertical shear. (Assume k > 0.) The right-

half-plane are sheared to upward and left-half-plane are sheared

to downward. The points on the y−axis reamain fixed. See

[Textbook, Example 3, fig 6.15, p.409] for diagrams.

6.5.1 Computer Graphics

Linear transformations are used in computer graphics to move figures
on the computer screens. I am sure all kinds of linear (and nonlinear)
transformations are used. Here, we will only deal with rotations by an
angle θ, around (1) x−axis, (2) y−axis and (3) z−axis as follows:

Proposition 6.5.2 Suppose θ is an angle. Suppose we want to ro-

tate the point (x, y, z) counterclockwise about z−axis through an an-

gle θ. Let us denote this transformation by T and write T (x, y, z) =

(x′, y′, z′)T . Then using lemma 6.3.10, we have

T (x, y, z) =







x′

y′

z′






=







cos θ − sin θ 0

sin θ cos θ 0

0 0 1













x

y

z






=







x cos θ − y sin θ

x sin θ + y cos θ

z






.

Similarly, we can write down the linear transformations corresponding

to rotation around x−axis and y−axis. We write down the transition

matrices for these three matrices as follows:

1. The standard matrix for this transformation of counterclockwise
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rotation by an angle θ, about x−axis is







1 0 0

0 cos θ − sin θ

0 sin θ cos θ






.

2. The standard matrix for this transformation of counterclockwise

rotation by an angle θ, about y−axis is







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ






.

3. The standard matrix for this transformation of counterclockwise

rotation by an angle θ, about z−axis is







cos θ − sin θ 0

sin θ cos θ 0

0 0 1






.

Reading assignment: Read [Textbook, Examples 4 and 5; page 410-
412].

Exercise 6.5.3 (Ex. 26, p. 414) Let T (x, y) = (x, 3y) (This is a

vertical expansion.) Sketch the image of the unit square with vertices

(0, 0), (1, 0), (1, 1), (0, 1).

Solution: We have

T (0, 0) = (0, 0), T (1, 0) = (1, 0), T (1, 1) = (1, 3), T (0, 1) = (0, 3).
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Diagram:

0, 3@GAFBECD

���
�

�

�

�

�

�

�

�

�

�

1, 3@GAFBECDoo_ _ _

0, 1@GAFBECD

��

1, 1@GAFBECDoo

0, 0@GAFBECD // //___ 1, 0@GAFBECD

OO

OO�
�

�

�

�

�

�

�

�

�

�

Here, the solid arrows represent the original rectangle and the brocken

arrows represent the image.

Exercise 6.5.4 (Ex. 30, p. 414) Let T be the reflection in the line

y = x. Sketch the image of the rectangle with vertices (0, 0), (0, 2), (1, 2), (1, 0).

Solution: Recall, (see Proposition 6.5.1 (3)) that T (x, y) = (y, x). We

have

T (0, 0) = (0, 0), T (0, 2) = (2, 0), T (1, 2) = (2, 1), T (1, 0) = (0, 1).

Diagram:

0, 2@GAFBECD // 1, 2@GAFBECD

��

0, 1@GAFBECD

���
�

�

2, 1@GAFBECDoo_ _ _ _ _ _ _ _

0, 0@GAFBECD

OO

//________ 1, 0@GAFBECDoo 2, 0@GAFBECD

OO�
�

�

Here, the solid arrows represent the original rectangle and the brocken

arrows represent the image.
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Exercise 6.5.5 (Ex. 38, p. 414) Suppose T is the expansion and

contraction represented by T (x, y) =
(

2x, y

2

)

. Sketch the image of the

rectangle with vertices (0, 0), (0, 2), (1, 2), (1, 0).

Solution: Recall, (see Proposition 6.5.1 (3)) that (x, y) = (y, x).We

have

T (0, 0) = (0, 0), T (0, 2) = (0, 1), T (1, 2) = (2, 1), T (1, 0) = (2, 0).

Diagram:

0, 2@GAFBECD // 1, 2@GAFBECD

��

2, 2@GAFBECD

0, 1@GAFBECD //______________ 2, 1@GAFBECD

���
�

�

�

�

�

�

�

0.5@GAFBECD

0, 0@GAFBECD

OO

OO�
�

�

�

�

�

�

�

1, 0@GAFBECDoo 2, 0@GAFBECDoo_ _ _ _ _ _ _ _ _ _ _ _ _ _

Here, the solid arrows represent the original rectangle and thebrocken

arrows represent the image.

Exercise 6.5.6 (Ex. 44, p. 414) Give the geometric description of

the linear transformation defined by the elementary matrix

A =

[

1 3

0 1

]

.

Solution: By proposition 6.5.1 (6) this is a horizontal shear. Here,

T (x, y) = (x + 3y, y).
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Exercise 6.5.7 (Ex. 50 and 54, p. 415) Find the matrix of the trans-

formation T that will produce a 60o rotation about the x−axis. Then

compute the image T (1, 1, 1).

Solution: By proposition 6.5.2 (1) the matrix is given by A =






1 0 0

0 cos θ − sin θ

0 sin θ cos θ






=







1 0 0

0 cos 60o − sin 60o

0 sin 60o cos 60o






=







1 0 0

0 1

2
−

√
3

2

0
√

3

2

1

2






.

So,

T (1, 1, 1) = A







1

1

1






=







1 0 0

0 1

2
−

√
3

2

0
√

3

2

1

2













1

1

1






=







1
1−

√
3

2

1+
√

3

2






.

Exercise 6.5.8 (Ex. 64, p. 415) Determine the matrix that will pro-

duce a 45o rotation about the y−axis followed by 90o rotation about

the z−axis. Then also compute the image of the line segment from

(0, 0, 0) to (1, 1, 1).

Solution: We will do it in three (or four) steps.

Step-1 Let T1 be the rotation by 45o about the y−axis. By proposition

6.5.2 (2) the matrix of T1 is given by A =






cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ






=







cos 450 0 sin 450

0 1 0

− sin 450 0 cos 450






=









1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2









Step-2 Let T2 be the rotation by 90o rotation about the z−axis. By

proposition 6.5.2 (3) the matrix of T2 is given by B =






cos θ − sin θ 0

sin θ cos θ 0

0 0 1






=







cos 90o − sin 90o 0

sin 90o cos 90o 0

0 0 1






=







0 −1 0

1 0 0

0 0 1






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Step-3 So, thematrix of the composite transformation T = T2T1 is matrix

BA =







0 −1 0

1 0 0

0 0 1















1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2









=









0 −1 0
1√
2

0 1√
2

− 1√
2

0 1√
2









The Last Part: So,

T (1, 1, 1) = BA







1

1

1






=









0 −1 0
1√
2

0 1√
2

− 1√
2

0 1√
2















1

1

1






=







−1√
2

0






.



222 CHAPTER 6. LINEAR TRANSFORMATION


