
18 Orthogonality and related matters

18.1 Orthogonality

Recall that two vectors x and y are said to be orthogonal if x•y = 0. (This is the Greek
version of “perpendicular”.)

Example: The two vectors  1
−1

0

 and

 2
2
4


are orthogonal, since their dot product is (2)(1) + (2)(−1) + (4)(0) = 0.

� Definition: A set of non-zero vectors {v1, . . . ,vk} is said to be mutually orthogonal if
vi•vj = 0 for all i 6= j.

The standard basis vectors e1, e2, e3 ∈ R3 are mutually orthogonal.

The vector 0 is orthogonal to everything.

� Definition: A unit vector is a vector of length 1. If its length is 1, then the square of
its length is also 1. So v is a unit vector ⇐⇒ v•v = 1.

� Definition: If w is an arbitrary nonzero vector, then a unit vector in the direction of
w is obtained by multiplying w by ||w||−1: ŵ = (1/||w||)w is a unit vector in the direction
of w. The caret mark over the vector will always be used to indicate a unit vector.

Examples: The standard basis vectors are all unit vectors. If

w =

 1
2
3

 ,

then a unit vector in the direction of w is

ŵ =
1

||w||
w =

1√
14

 1
2
3

 .

� Definition: The process of replacing a vector w by a unit vector in its direction is called
normalizing the vector.

For an arbitrary nonzero vector in R3  x
y
z

 ,
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the corresponding unit vector is

1√
x2 + y2 + z2

 x
y
z



In physics and engineering courses, this particular vector is often denoted by r̂. For instance,
the gravitational force on a particle of mass m sitting at (x, y, z)t due to a particle of mass
M sitting at the origin is

F =
−GMm

r2
r̂,

where r2 = x2 + y2 + z2.

18.2 Orthonormal bases

Although we know that any set of n linearly independent vectors in Rn can be used as a
basis, there is a particularly nice collection of bases that we can use in Euclidean space.

� Definition: A basis {v1,v2, . . . ,vn} of En is said to be orthonormal if

1. vi•vj = 0, whenever i 6= j — the vectors are mutually orthogonal, and

2. vi•vi = 1 for all i — and they are all unit vectors.

Examples: The standard basis is orthonormal. The basis{(
1
1

)
,

(
1
−1

)}
is orthogonal, but not orthonormal. We can normalize these vectors to get the orthonormal
basis {(

1/
√

2

1/
√

2

)
,

(
1/
√

2

−1/
√

2

)}
You may recall that it can be tedious to compute the coordinates of a vector w in an arbitrary
basis. One advantage of using an orthonormal basis is the following:

Theorem: Let {v1, . . . ,vn} be an orthonormal basis in En. Let w ∈ En. Then

w = (w•v1)v1 + (w•v2)v2 + · · ·+ (w•vn)vn.
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That is, the ith coordinate of w in this basis is given by w•vi, the dot product of w with the
ith basis vector. Alternatively, the coordinate vector of w in this orthonormal basis is

wv =


w•v1

w•v2

· · ·
w•vn

 .

Proof: Since we have a basis, we know there are unique numbers c1, . . . , cn (the coordinates
of w in this basis) such that

w = c1v1 + c2v2 + · · ·+ cnvn.

Take the dot product of both sides of this equation with v1: using the linearity of the dot
product, we get

v1•w = c1(v1•v1) + c2(v1•v2) + · · ·+ cn(v1•vn).

Since the basis is orthonormal, all the dot products vanish except for the first, and we have
(v1•w) = c1(v1•v1) = c1. An identical argument holds for the general vi.

Example: Find the coordinates of the vector

w =

(
2
−3

)
in the basis

{v1,v2} =

{(
1/
√

2

1/
√

2

)
,

(
1/
√

2

−1/
√

2

)}
.

Solution: w•v1 = 2/
√

2 − 3/
√

2 = −1/
√

2, and w•v2 = 2/
√

2 + 3/
√

2 = 5/
√

2. So the
coordinates of w in this basis are

1√
2

(
−1

5

)
.

Exercises:

1. In E2, let

{e1(θ), e2(θ)} =

{(
cos θ
sin θ

)
,

(
− sin θ

cos θ

)}
.

Show that {e1(θ), e2(θ)} is an orthonormal basis of E2 for any value of θ. What’s the
relation between {e1(θ), e2(θ)} and {i, j} = {e1(0), e2(0)}?
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2. Let

v =

(
2
−3

)
.

Find the coordinates of v in the basis {e1(θ), e2(θ)}

• By using the theorem above.

• By writing v = c1e1(θ) + c2e2(θ) and solving for c1, c2.

• By setting Eθ = (e1(θ)|e2(θ)) and using the relation v = Eθvθ.
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