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54. Find the kernel of the linear transformation given in Exercise 50.

In Exercises 55 and 56, find the image of for the indicated
composition, where and are given by the following matrices.

and

55. 56.

57. Determine which of the following sets are subspaces of the
vector space of complex matrices.

(a) The set of symmetric matrices.

(b) The set of matrices A satisfying 

(c) The set of matrices in which all entries are real.

(d) The set of diagonal matrices.2 3 2

2 3 2

sAdT 5 A.2 3 2

2 3 2

2 3 2

T1 8 T2T2 8 T1

A2 5 32i

i

i

2i4A1 5 30

i

i

04

T2T1

v 5 si, id

58. Determine which of the following sets are subspaces of the
vector space of complex-valued functions (see Example 4).

(a) The set of all functions f satisfying 

(b) The set of all functions f satisfying f

(c) The set of all functions f satisfying f .sid 5 f s2i d
s0d 5 1.

f sid 5 0.

8.5 UNITARY AND HERMITIAN MATRICES

Problems involving diagonalization of complex matrices, and the associated eigenvalue
problems, require the concept of unitary and Hermitian matrices. These matrices roughly
correspond to orthogonal and symmetric real matrices. In order to define unitary and
Hermitian matrices, we first introduce the concept of the conjugate transposeof a com-
plex matrix.

Note that if A is a matrix with real entries, then A* . To find the conjugate trans-
pose of a matrix, we first calculate the complex conjugate of each entry and then take the
transpose of the matrix, as shown in the following example.

E X A M P L E  1 Finding the Conjugate Transpose of a Complex Matrix

Determine A* for the matrix

A 5 33 1 7i

2i

0

4 2 i
  4.

5 AT

Definition of the 
Conjugate Transpose of a
Complex Matrix

The conjugate transpose of a complex matrix A, denoted by A*, is given by

A*

where the entries of are the complex conjugates of the corresponding entries of A.A

5 A T



Solution

A*

We list several properties of the conjugate transpose of a matrix in the following theo-
rem. The proofs of these properties are straightforward and are left for you to supply in
Exercises 49–52.

Unitary Matrices
Recall that a real matrix A is orthogonalif and only if In the complex system,
matrices having the property that * are more useful and we call such matrices 
unitary.

E X A M P L E  2 A Unitary Matrix

Show that the following matrix is unitary.

Solution Since

AA*

we conclude that A* Therefore, A is a unitary matrix.5 A21.

5
1

2
 31 1 i

1 2 i

1 2 i

1 1 i
    4 1

23
1 2 i

1 1 i

1 1 i

1 2 i
    4 5

1

43
4

0

0

44 5 I2

A 5
1

2 3
1 1 i

1 2 i

1 2 i

1 1 i
   4

A21 5 A
A21 5 AT.

5 AT 5   
3 2 7i

0

22i

4 1 i
   

A 5   
3 1 7i

2i

0

4 2 i
5  

3 2 7i

22i

0

4 1 i
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Definition of a
Unitary Matrix

A complex matrix A is called unitary if

*.A21 5 A

Theorem 8.8
Properties of
Conjugate Transpose

If A and B are complex matrices and k is a complex number, then the following proper-
ties are true.
1. (A*)* = A
2. (A + B)* = A* + B*
3. (kA)* = *
4. (AB)* = B*A*

kA

[                     ] [                     ]
[                    ]



In Section 7.3, we showed that a real matrix is orthogonal if and only if its row (or
column) vectors form an orthonormal set. For complex matrices, this property characterizes
matrices that are unitary. Note that we call a set of vectors

in (complex Euclidean space) orthonormal if the following are true.

1.

2.

The proof of the following theorem is similar to the proof of Theorem 7.8 given in
Section 7.3.

E X A M P L E  3 The Row Vectors of a Unitary Matrix

Show that the following complex matrix is unitary by showing that its set of row vectors
form an orthonormal set in 

Solution We let and be defined as follows.

The length of is

 5 31

4
1

2

4
1

1

44
1y2

5 1.

 5 311

221
1

22 1 11 1 i

2 211 1 i

2 2 1 121

2 2121

2 24
1y2

 ir1i 5  sr1? r1d
1y2

r1

r3 5 1 5i

2Ï15
,  

3 1 i

2Ï15
,  

4 1 3i

2Ï152

r2 5 12
i

Ï3
,  

i

Ï3
,  

1

Ï32

r1 5 11

2
,  

1 1 i

2
, 2

1

22
r3r1, r2,

4 1 3i

2Ï15

3 1 i

2Ï15

5i

2Ï15

2
i

Ï3 
       

i

Ï3
         

1

Ï3
A 5

2
1

2

1 1 i

2

1

2

C3.

vi ? vj 5 0,  i Þ j

ivii 5 1, i 5 1, 2, . . . , m

Cn

hv1, v2, . . . , vmj
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Theorem 8.9
Unitary Matrices

An complex matrix A is unitary if and only if its row (or column) vectors form
an orthonormal set in Cn.

n 3 n



The vectors and can also be shown to be unit vectors. The inner product of and 
is given by

Similarly, and and we can conclude that is an orthonormal
set. (Try showing that the column vectors of A also form an orthonormal set in C3.)

Hermitian Matrices
A real matrix is called symmetric if it is equal to its own transpose. In the complex system,
the more useful type of matrix is one that is equal to its own conjugatetranspose. We call
such a matrix Hermitian after the French mathematician Charles Hermite (1822–1901).

As with symmetric matrices, we can easily recognize Hermitian matrices by inspection.
To see this, consider the matrix.

The conjugate transpose of A has the form

A*

A*

A*

If A is Hermitian, then * and we can conclude that A must be of the form

A 5 3 a1

b1 2 b2i

b1 1 b2i

d1

        4.

A 5 A

 5 3a1 2 a2i

b1 2 b2i

c1 2 c2i

d1 2 d2i
          4.

 5 3a1 1 a2i

b1 1 b2i

c1 1 c2i

d1 1 d2i4
 5 AT

A 5 3a1 1 a2i

c1 1 c2i

    b1 1 b2i

d1 1 d2i
          4.

2 3 2

hr1, r2, r3jr2? r3 5 0r1? r3 5 0

 5 0.

 5
i

2Ï3
2

i

2Ï3
1

1

2Ï3
2

1

2Ï3

 5 11

221
i

Ï32 1 11 1 i

2 21 2i

Ï32 1 121

2 21 1

Ï32

 r1 ? r2 5 11

221
2i

Ï32 1 11 1 i

2 21 i

Ï32 1 121

2 21 1

Ï32

r2r1r3r2
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Definition of a
Hermitian Matrix

A square matrix A is Hermitian if

*.A 5 A



Similar results can be obtained for Hermitian matrices of order In other words, a
square matrix A is Hermitian if and only if the following two conditions are met.
1. The entries on the main diagonal of A are real.
2. The entry in the ith row and the jth column is the complex conjugate of the entry 

in the jth row and ith column.

E X A M P L E  4 Hermitian Matrices

Which of the following matrices are Hermitian?

(a) (b)

(c) (d)

Solution (a) This matrix is not Hermitian because it has an imaginary entry on its main diagonal.
(b) This matrix is symmetric but not Hermitian because the entry in the first row and

second column is not the complex conjugate of the entry in the second row and first
column.

(c) This matrix is Hermitian.
(d) This matrix is Hermitian, because all real symmetric matrices are Hermitian.

One of the most important characteristics of Hermitian matrices is that their eigenvalues
are real. This is formally stated in the next theorem.

Proof Let be an eigenvalue of A and

be its corresponding eigenvector. If we multiply both sides of the equation by the
row vector v*, we obtain

v* * *

Furthermore, since

* * * A*(v*)* 5 v*Av5 vAvdsv

vd 5 lsa1
2 1 b1

2 1 a2
2 1 b2

2 1 ? ? ? 1 an
2 1 bn

2d.slvd 5 lsvAv 5 v

Av 5 lv

v 5 3
a1 1 b1i

a2 1 b2i

..

.

an 1 bni
4

l

3
21

2

3

2

0

21

3

21

443
3

2 1 i

3i

2 2 i

0

1 1 i

23i

1 2 i

0

      4
3 0

3 2 2i

3 2 2i

4
       43 1

3 1 i

3 2 i

i
    4

ajiaij

n 3 n.

Theorem 8.10 
The Eigenvalues of a
Hermitian Matrix

If A is a Hermitian matrix, then its eigenvalues are real numbers.
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it follows that v*Av is a Hermitian matrix. This implies that v*Av is a real number,
and we may conclude that is real.

R E M A R K :  Note that this theorem implies that the eigenvalues of a real symmetric matrix
are real, as stated in Theorem 7.7.

To find the eigenvalues of complex matrices, we follow the same procedure as for real
matrices.

E X A M P L E  5 Finding the Eigenvalues of a Hermitian Matrix

Find the eigenvalues of the following matrix.

Solution The characteristic polynomial of A is

which implies that the eigenvalues of A are and 

To find the eigenvectors of a complex matrix, we use a similar procedure to that used for
a real matrix. For instance, in Example 5, the eigenvector corresponding to the eigenvalue

is obtained by solving the following equation.

 3
24

22 2 i

23i

22 1 i

21

21 2 i

3i

21 1 i

21

                4 3
v1

v2

v3
4 5 3

0

0

04

 3
l 2 3

22 2 i

23i

22 1 i

l

21 2 i

3i

21 1 i

l

              4 3
v1

v2

v3
4 5 3

0

0

04
l 5 21

22.21, 6,

 5 sl 1 1dsl 2 6dsl 1 2d

 5 l3 2 3l2 2 16l 2 12

 5 sl3 2 3l2 2 2l 1 6d 2 s5l 1 9 1 3id 1 s3i 2 9 2 9ld

1 3i fs1 1 3id 1 3lig

 5 sl 2 3dsl2 2 2d 2 s22 1 idfs22 2 idl 2 s3i 1 3dg

 ulI 2 Au 5 3
l 2 3

22 2 i

23i

22 1 i

l

21 2 i

3i

21 1 i

l

              4

A 5 3
3

2 1 i

3i

2 2 i

0

1 1 i

23i

1 2 i

0

     4

l
1 3 1
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Using Gauss-Jordan elimination, or a computer or calculator, we obtain the following
eigenvector corresponding to 

Eigenvectors for and can be found in a similar manner. They are

Some computers and calculators have built-in programs for finding the eigenvalues and
corresponding eigenvectors of complex matrices. For example, on the TI-85, the eigVl
key on the MATRX MATH menu calculates the eigenvalues of the matrix A, and the 
eigVc key gives the corresponding eigenvectors.

Just as we saw in Section 7.3 that real symmetric matrices were orthogonally diagonal-
izable, we will show now that Hermitian matrices are unitarily diagonalizable. A square
matrix A is unitarily diagonalizable if there exists a unitary matrix P such that

is a diagonal matrix. Since P is unitary, *, so an equivalent statement is that A is
unitarily diagonalizable if there exists a unitary matrix P such that *AP is a diagonal
matrix. The next theorem tells us that Hermitian matrices are unitarily diagonalizable.

Proof To prove part 1, let and be two eigenvectors corresponding to the distinct (and real)
eigenvalues and . Because and we have the following equa-
tions for the matrix product *

* * A* * * *

* * * *

Therefore,

* *

*

* since

and we have shown that and are orthogonal. Part 2 of Theorem 8.11 is often called
the Spectral Theorem,and its proof is omitted.

v2v1

l1Þ l2,v2 5 0v1

v2 5 0sl2 2 l1dv1

v2 5 0v2 2 l1v1l2v1

v2l1v2 5 l1v1v2 5 v1v2 5 sl1v1dsAv1d

v2l2v2 5 l2v1Av2 5 v1v2 5 v1v2 5 v1sAv1d

v2.sAv1d
Av2 5 l2v2,Av1 5 l1v1l2l1

v2v1

P
P21 5 P

P21AP

sl3 5 22d3
1 1 3i

22 2 i

5 4sl2 5 6d;3
1 2 21i

6 2 9i

13 4
l3 5 22l2 5 6

sl1 5 21dv1 5 3
21

1 1 2i

1 4
l1 5 21.
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Theorem 8.11
Hermitian Matrices and
Diagonalization

If A is an Hermitian matrix, then
1. eigenvectors corresponding to distinct eigenvalues are orthogonal.
2. A is unitarily diagonalizable.

n 3 n

T E C H N O L O G Y
N O T E



E X A M P L E  6 The Eigenvectors of a Hermitian Matrix

The eigenvectors of the Hermitian matrix given in Example 5 are mutually orthogonal 
because the eigenvalues are distinct. We can verify this by calculating the Euclidean inner
products and For example,

The other two inner products and can be shown to equal zero in a similar
manner.

The three eigenvectors in Example 6 are mutually orthogonal because they correspond to
distinct eigenvalues of the Hermitian matrix A. Two or more eigenvectors corresponding to
the same eigenvector may not be orthogonal. However, once we obtain any set of linearly
independent eigenvectors for a given eigenvalue, we can use the Gram-Schmidt orthonor-
malization process to obtain an orthogonal set.

E X A M P L E  7 Diagonalization of a Hermitian Matrix

Find a unitary matrix P such that P*AP is a diagonal matrix where

Solution The eigenvectors of A are given after Example 5. We form the matrix P by normalizing
these three eigenvectors and using the results to create the columns of P. Thus, since

we obtain the unitary matrix P,

P =     .

1

Ï7
         

13

Ï728
      

5

Ï40

1 1 2i

Ï7
     

6 2 9i

Ï728
     

22 2 i

Ï40
  

2
1

Ï7 
     

1 2 21i

Ï728
      

1 1 3i

Ï40

iv3i 5 is1 1 3i, 22 2 i, 5di 5 Ï10 1 5 1 25 5 Ï40

iv2i 5 is1 2 21i, 6 2 9i, 13di 5 Ï442 1 117 1 169 5 Ï728

iv1i 5 is21, 1 1 2i, 1di 5 Ï1 1 5 1 1 5 Ï7

A 5 3
3

2 1 i

3i

2 2 i

0

1 1 i

23i

1 2 i

0

         4 .

v2 ? v3v1? v3

 5 0.

 5 21 2 21i 1 6 1 12i 1 9i 2 18 1 13

 5 s21ds1 1 21id 1 s1 1 2ids6 1 9id 1 13

 v1? v2 5 s21ds1 2 21id 1 s1 1 2ids6 2 9id 1 s1ds13d

v2?  v3.v1? v2, v1? v3
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Try computing the product P*AP for the matrices A and P in Example 7 to see that you
obtain

*

where and are the eigenvalues of A.
We have seen that Hermitian matrices are unitarily diagonalizable. However, it turns out

that there is a larger class of matrices, called normal matrices, which are also unitarily di-
agonalizable. A square complex matrix A is normal if it commutes with its conjugate trans-
pose: AA* = A*A. The main theorem of normal matrices says that a complex matrix A is
normal if and only if it is unitarily diagonalizable. You are asked to explore  normal matri-
ces further in Exercise 59.

The properties of complex matrices described in this section are comparable to the 
properties of real matrices discussed in Chapter 7. The following summary indicates the
correspondence between unitary and Hermitian complex matrices when compared with or-
thogonal and symmetric real matrices.

2221, 6, 

AP 5 3
21

0

0

0

6

0

0

0

224P
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Comparison of
Hermitian and 
Symmetric Matrices

A is a symmetric matrix A is a Hermitian matrix
(Real) (Complex)

1. Eigenvalues of A are real. 1. Eigenvalues of A are real.

2. Eigenvectors corresponding to 2. Eigenvectors corresponding to
distinct eigenvalues are distinct eigenvalues are
orthogonal. orthogonal.

3. There exists an orthogonal 3. There exists a unitary matrix
matrix P such that P such that

P*AP

is diagonal. is diagonal.

PTAP
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In Exercises 1– 8, determine the conjugate transpose of the given
matrix.

1. 2.

3. 4.

5.

6. 7.

8.

In Exercises 9–12, explain why the given matrix is not unitary.

9. 10.

11.

12.

In Exercises 13–18, determine whether A is unitary by calculating
AA*.

13. 14.

15. 16. A 5A 5 In

A 5 31 1 i

1 2 i

1 2 i

1 1 i
   4A 5 31 1 i

1 2 i

1 1 i

1 2 i
   4

A 5

A 5

A 5 31

i

i

214A 5 3 i

0

0

04

A 5 3
2

5

0

i

3i

6 2 i

    4
A 5 3

7 1 5i

2i

4 4A 5 32 1 i

3 2 i

  3 2 i

  2

4 1 5i

6 2 2i 4

A 5 3
0

5 2 i

2Ï2i

5 1 i

6

4

Ï2i

4

3 4

A 5 34 1 3i

2 2 i

2 1 i

6i 4A 5 30

2

1

04

A 5 31 1 2i

1

2 2 i

1 4A 5 3 i

2

2i

3i4 17. 18.

In Exercises 19–22. (a) verify that A is unitary by showing that its
rows are orthonormal, and (b) determine the inverse of A.

19. 20.

21.

22.

In Exercises 23–28, determine whether the matrix A is Hermitian.

23. 24.

25.

26.

27.

28. A 5 3
1

Ï2 2 i

5

Ï2 1 i

2

3 2 i

5

3 1 i

6 4
A 5 30

0

0

04

A 5 3 1

2 2 i

2 1 i

2

3 2 i

3 1 i4

A 5 3 0

2i

i

0 4

A 5 31

0

0

14A 5 3
0

2 2 i

1

2 1 i

i

0

1

0

14

A 5

A 5
1

2Ï2
  
Ï3 2 i

Ï3 1 i

1 1 Ï3i

1 2 Ï3i

A 5A 5

    0      
i

Ï3
     2

i

Ï6

A 5  
i

Ï2
     

i

Ï3
      

i

Ï6
A 5

 2
i

Ï2
     

i

Ï3
      

i

Ï6

   0      1       0

1 1 i

Ï2
   0   2

i

Ï2

   2
1

2
        

1

2
     2

1 1 i

2

2
i

Ï3
     

1

Ï3
       

i

Ï3

    
1

2
      2

1

2
       

1 1 i

2

i

Ï2
     2

i

Ï2

i

Ï2
       

i

Ï2

 
1

Ï2
           

1

Ï2

1 1 i

2
      2

1 1 i

2

  
3

5
i      

4

5
i

2
4

5
       

3

5

  
3

5
       

4

5
i

2
4

5
       

3

5
i

  
2

Ï6
         0        

1

Ï3

21 1 i

Ï6
      0      

1 2 i

Ï3

     0           1          0
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In Exercises 29–34, determine the eigenvalues of the matrix A.

29. 30.

31. 32.

33.

34.

In Exercises 35–38, determine the eigenvectors of the given matrix.

35. The matrix in Exercise 29.

36. The matrix in Exercise 30.

37. The matrix in Exercise 33.

38. The matrix in Exercise 32.

In Exercises 39–43, find a unitary matrix P that diagonalizes the
given matrix A.

39. 40.

41.

42.

43. A 5 3
21

0

0

0

21

21 2 i

0

21 1 i

0 4
A 5 3 4

2 2 2i

2 1 2i

6 4

 2
i

Ï2
        0         2

A 5    
i

Ï2
        2          0

    2     2
i

Ï2
      

i

Ï2

A 5 3 0

2 2 i

2 1 i

4 4A 5 3 0

2i

i

04

A 5 3
1

0

0

4

i

0

1 2 i

3i

2 1 i
4

2
i

Ï2
        0        2

A 5   
i

Ï2
        2         0

    2    2
i

Ï2
     

i

Ï2

A 5 3 3

2i

i

34A 5 3 3

1 1 i

1 2 i

2 4

A 5 3 0

2 2 i

2 1 i

4 4A 5 3 0

2i

i

04
44. Let z be a complex number with modulus 1. Show that the

following matrix is unitary.

In Exercises 45–48, use the result of Exercise 44 to determine a, b,
and c so that A is unitary.

45. 46.

47. 48.

In Exercises 49–52, prove the given formula, where A and B are
complex matrices.

49. 50.

51. 52.

53. Let A be a matrix such that Prove that iA is
Hermitian.

54. Show that det where A is a matrix.

In Exercises 55–56, assume that the result of Exercise 54 is true for
matrices of any size.

55. Show that 

56. Prove that if A is unitary, then 

57. (a) Prove that every Hermitian matrix A can be written as the
sum where B is a real symmetric matrix and
C is real and skew-symmetric.

(b) Use part (a) to write the matrix

as a sum where B is a real symmetric matrix
and C is real and skew-symmetric.

(c) Prove that every complex matrix A can be written
as where B and C are Hermitian.

(d) Use part (c) to write the complex matrix

as a sum where B and C are Hermitian.A 5 B 1 iC,

A 5 3 i

2 1 i

2

1 2 2i4

A 5 B 1 iC,
n 3 n

A 5 B 1 iC,

A 5 3 2

1 2 i

1 1 i

3 4

A 5 B 1 iC,

udetsAdu 5 1.

detsApd 5 detsAd.

2 3 2sAd 5 detsAd,

Ap 1 A 5 O.

sABdp 5 BpApskAdp 5 kAp

sA 1 Bdp 5 Ap 1 BpsApdp 5 A

n 3 n

A 5
1

Ï2
 3

3
a

b c
4A 5

1

Ï2
 3 i

b

a

c4

A 5
1

Ï2
 3

3

b

a

c
4A 5

1

Ï2
 321

b

a

c 4

A 5
1

Ï2
   

z

iz

z

2iz

6 1 3i

Ï45

3 2 4i

5

[          ]



23. 24.

In Exercises 25 and 26, find (if it exists).

25.

26.

In Exercises 27–30, determine the polar form of the complex
number.

27. 28.

29. 30.

In Exercises 31–34, find the standard form of the given complex
number.

31.

32.

33. 34.

In Exercises 35–38, perform the indicated operation. Leave the
result in polar form.

35. 341cos 
p

2
1 i sin 

p

224331cos 
p

6
1 i sin 

p

624

71cos 
3p

2
1 i sin 

3p

2 261cos 
2p

3
1 i sin 

2p

3 2

41cos 
5p

4
1 i sin 

5p

4 2

53cos12
p

62 1 i sin 12
p

624

Ï3 1 i7 2 4i

3 1 2i4 1 4i

A 5 35

0

1 2 i

i 4

A 5 3
3 2 i 21 2 2i

2 1 3i 4
A21

5 1 2i

(22 1 2i)(2 2 3i )

(1 2 2id(1 1 2id
3 2 3i
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58. Determine which of the following sets are subspaces of the
vector space of complex matrices.

(a) The set of Hermitian matrices.

(b) The set of unitary matrices.

(c) The set of normal matrices.

59. (a) Prove that every Hermitian matrix is normal.

(b) Prove that every unitary matrix is normal.

(c) Find a matrix that is Hermitian, but not unitary.2 3 2

n 3 n

n 3 n

n 3 n

n 3 n
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(d) Find a matrix that is unitary, but not Hermitian.

(e) Find a matrix that is normal, but neither Hermitian
nor unitary.

(f) Find the eigenvalues and corresponding eigenvectors of
your matrix from part (e).

(g) Show that the complex matrix

is not diagonalizable. Is this matrix normal?

3 i

0

1

i 4

2 3 2

2 3 2

In Exercises 1–6, perform the given operation.

1. Find 

2. Find 

3. Find 

4. Find

5. Find 

6. Find 

In Exercises 7–10, find all zeros of the given polynomial.

7. 8.

9. 10.

In Exercises 11–14, perform the given operation using

and

11. 12.

13. 14.

In Exercises 15–20, perform the given operation using 
and 

15. 16.

17. 18.

19. 20.

In Exercises 21–24, perform the indicated operation.

21. 22.
1 1 i

21 1 2i

2 1 i

2 2 i

uzwuwv

uvzuuwu
vz

z 5 21 1 2i.2 2 2i, v 5 3 1 i, 
w 5

3BAdetsA 2 Bd
2iBA 1 B

B 5 31 1 i

2i

i

2 1 i4.A 5 34 2 i

3

2

3 1 i4

x3 1 2x2 1 2x 1 13x2 1 3x 1 3

x2 2 4x 1 7x2 2 4x 1 8

u

z
 : u 5 7 1 i, z 5 i

u

z
 : u 5 6 2 2i, z 5 3 2 3i

uz : u 5 2i, z 5 1 2 2i

uz : u 5 4 2 2i, z 5 4 1 2i

u 2 z : u 5 4, z 5 8i

u 1 z : u 5 2 2 4i, z 5 4i

2
23

5
1

11

5
i



36.

37.

38.

In Exercises 39– 42, find the indicated power of the given number
and express the result in polar form.

39. 40.

41. 42.

In Exercises 43–46, express the given roots in standard form.

43. Square roots: 

44. Cube roots: 

45. Cube roots: i

46. Fourth roots: 

In Exercises 47 and 48, determine the conjugate transpose of the
given matrix.

47.

48.

In Exercises 49–52, find the indicated vector using 

49. 50.

51. 52.

In Exercises 53 and 54, determine the Euclidean norm of the given
vector.

53. 54.

In Exercises 55 and 56, find the Euclidean distance between the
given vectors.

55. v 5 s2 2 i, id,   u 5 si, 2 2 id

v 5 s3i, 21 2 5i, 3 1 2idv 5 s3 2 5i, 2id

s3 1 2idu 2 s22idwiu 1 iv 2 iw

3iw 1 s4 2 idv7u 2 v

v 5 s3, 2i  d, and w 5 s3 2 i, 4 1 id.
u 5 s4i, 2 1 id, 

A 5 3
5

2 1 2i

3i

2 2 i

3 2 2i

2 1 i

3 1 2i

i

21 2 2i 4
A 5 321 1 4i

3 2 i

3 1 i

2 1 i4

161cos 
p

4
1 i sin 

p

42

271cos 
p

6
1 i sin 

p

62

251cos 
2p

3
1 i sin 

2p

3 2

351cos 
p

3
1 i sin 

p

324
43Ï21cos 

p

6
1 i sin 

p

624
7

s2id3s21 2 id4

4[cos(py4) 1 i sin (py4)]

7[cos(py3) 1 i sin (py3)]

9[cos(py2) 1 i sin (py2)]

6[cos(2py3) 1 i sin (2py3)]

31

21cos 
p

2
1 i sin 

p

224321cos 12
p

22 1 i sin 12
p

2224
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56.

In Exercises 57–60, determine whether the given matrix is unitary.

57. 58.

59. 60.

In Exercises 61 and 62, determine whether the given matrix is
Hermitian.

61.

62.

In Exercises 63 and 64, find the eigenvalues and corresponding
eigenvectors of the given matrix.

63. 64.

65. Prove that if A is an invertible matrix, then A* is also 
invertible.

66. Determine all complex numbers z such that 

67. Prove that if the product of two complex numbers is zero,
then one of the numbers must be zero.

68. (a) Find the determinant of the following Hermitian matrix.

(b) Prove that the determinant of any Hermitian matrix is real.

69. Let A and B be Hermitian matrices. Prove that if
and only if AB is Hermitian.

70. Let u be a unit vector in Cn. Define Prove
that H is an Hermitian and unitary matrix.n 3 n

H 5 I 2 2uup.

AB 5 BA

3
3

2 1 i

3i

2 2 i

0

1 1 i

23i

1 2 i

0 4

z 5 2z

3
2

0

i

0

3

0

2i

0

243 4

2 1 i

2 2 i

0 4

3
9

2 1 i

2

2 2 i

0

21 1 i

2

21 2 i

3 4

3
1

1 2 i

2 1 i

21 1 i

3

2i

2 2 i

i

4 4

31

i

0

2i4

v 5 s2 1 i, 21 1 2i, 3id,  u 5 s4 2 2i, 3 1 2i, 4d

i

Ï2
     

1

Ï2

i

Ï2
    2

1

Ï2

 
1

Ï3
       

Ï2

Ï3

2 1 i

4
      

1 1 i

4

1 1 i

2
     0     

21 2 i

2

   0        i         0

 
1

Ï2
      0       

1

Ï2



71. Use mathematical induction to prove DeMoivre’s Theorem.

72. Prove that if z is a zero of a polynomial equation with real co-
efficients, then the conjugate of z is also a zero.

73. Show that if and are both nonzero real numbers,
then z1 and z2 are both real numbers.

74. Prove that if z and w are complex numbers, then

uz 1 wu  # uzu 1 uwu .

z1z2z1 1 z2
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CHAPTER 8  PROJECTS

1 Population Growth and Dynamical Systems - II

In the projects for Chapter 7, you were asked to model the population of two species using
a system of differential equations of the form

The constants a, b, c, and d depend on the particular species being studied. In Chapter 7,
we looked at an example of a predator–prey relationship, in which 

Suppose we now consider a slightly different model.

1. Use the diagonalization technique to find the general solutions and at
any time t > 0. Although the eigenvalues and eigenvectors of the matrix

are complex, the same principles apply, and you can obtain complex exponen-
tial solutions.

2. Convert your complex solutions to real solutions by observing that if
is a (complex) eigenvalue of A with (complex) eigenvector v, then

the real and imaginary parts of form a linearly independent pair of (real)
solutions. You will need to use the formula 

3. Use the initial conditions to find the explicit form of the (real) solutions to the
original equations.

4. If you have access to a computer or graphing calculator, graph the solutions 
obtained in part (3) over the domain 0 ≤ t ≤ 3.  At what moment are the two
populations equal?

5. Interpret the solution in terms of the long-term population trend for the two
species. Does one species ultimately disappear? Why or why not? Contrast this
solution to that obtained for the model in Chapter 7.

6. If you have access to a computer or graphing calculator that can numerically
solve differential equations, use it to graph the solutions to the original system
of equations. Does this numerical approximation appear to be accurate?

eiu 5 cos u 1 i sin u.
eltv

l 5 a 1 bi

A 5 3 0.6

20.8

0.8

0.64

y2stdy1std

y2s0d 5 121y92std 5 20.8y1std 1 0.6y2std,
y1s0d 5 36y91std 5 0.6y1std 1 0.8y2std,

c 5 20.4, and d 5 3.0.
b 5 0.6,a 5 0.5,

y92std 5 cy1std 1 dy2std.
y91std 5 ay1std 1 by2std

75. Prove that for all vectors u and v in a complex inner product
space,

 2 iiu 2 ivi2 .

 7u, v8 5
1
4  iu 1 vi2 2 iu 2 vi2 1 iiu 1 ivi2[

]


