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54. Find the kernel of the linear transformation given in Exercise 50. 58. Determine which of the following sets are subspaces of the

In Exercises 55 and 56, find the imagevcf (i, i) for the indicated

vector space of complex-valued functions (see Example 4).

composition, wherd, an@l, are given by the following matrices. (a) The set of all functionisatisfyingf (i) = 0.

0 i —i
Al:[i (')] and Azz[ :

(b) The set of all functionssatisfyingf (0) = 1.

] (c) The set of all functionksatisfyingf (i) = f(—i).

55. T,o T, 56.T,° T,
57. Determine which of the following sets are subspaces of the
vector space a2 X 2 complex matrices.

(&) The set o2 X 2 symmetric matrices.
(b) The set oR X 2 matrices satisfying(A)™ = A.
(c) The set o2 X 2 matrices in which all entries are real.

(d) The set ok X 2 diagonal matrices.

Definition of the
Conjugate Transpose of a

Complex Matrix

8.5 UNITARY AND HERMITIAN MATRICES

Problems involving diagonalization of complex matrices, and the associated eigenvalue
problems, require the conceptuofitary andHermitian matrices. These matrices roughly
correspond to orthogonal and symmetric real matrices. In order to define unitary and
Hermitian matrices, we first introduce the concept ofdhigjugate transposeof a com-

plex matrix.

The conjugate transposeof a complex matriXd, denoted byA*, is given by
Ax=AT
where the entries g are the complex conjugates of the corresponding entries of
Note that ifA is a matrix with real entries, thekt = A". To find the conjugate trans-

pose of a matrix, we first calculate the complex conjugate of each entry and then take the
transpose of the matrix, as shown in the following example.

EXAMPLE 1

Finding the Conjugate Transpose of a Complex Matrix

DetermineA* for the matrix

3+7 0
A= .
[ 2 4—i]



Solution
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]

3-7 -2
0 4+i

>|
Il

Ar = AT =

Theorem 8.8

Properties of
Conjugate Transpose

Definition of a
Unitary Matrix

We list several properties of the conjugate transpose of a matrix in the following theo
rem. The proofs of these properties are straightforward and are left for you to supply i
Exercises 49-52.

If A andB are complex matrices ahkds a complex number, then the following proper-
ties are true.

1. A*)*=A
2. (A+B)*=A*+B*
3. kA)* = kA*

4. (AB)* = B*A*

Unitary Matrices

Recall that a real matri& is orthogonalif and only if A™* = AT. In the complex system,
matrices having the property that® = A * are more useful and we call such matrice:
unitary.

A complex matrixA is calledunitary if
Al = A

EXAMPLE 2

Solution

A Unitary Matrix

Show that the following matrix is unitary.

11 +i 1—i
A=_ , .
2[1—| 1+|]

Since
AA*=1 1+i 1—?}1—i1+i :}4 O:I2
211 —1 1+i|2(1+1 1—i 40 4

we conclude that* = A~*. Therefore,A is a unitary matrix.
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Theorem 8.9

Unitary Matrices

EXAMPLE 3

COMPLEX VECTOR SPACES

In Section 7.3, we showed that a real matrix is orthogonal if and only if its row (or
column) vectors form an orthonormal set. For complex matrices, this property characterizes
matrices that are unitary. Note that we call a set of vectors

Vi, Vo ooy V)
in C" (complex Euclidean space) orthonormal if the following are true.
1vl=12i=12...,m
2.viv; =0, 1 #]

The proof of the following theorem is similar to the proof of Theorem 7.8 given in
Section 7.3.

An n X n complex matrixA is unitary if and only if its row (or column) vectors form
an orthonormal set iG".

The Row Vectors of a Unitary Matrix

Show that the following complex matrix is unitary by showing that its set of row vectors
form an orthonormal set i@°.

1 1+i 1
2 2 2
Ao |t 1
V3 V3 V3
5i 3+i 4+3i
| 2V15 2V15 2V15|

We letr,, r,, andr; be defined as follows.
i 11+i 1
L\ o202

i I 1
f2= <_\/§' V3 \/§>
- 5i 3+i 4+ 3i
2 \2V15 2V15 2V15
The length ofl is

Iraff = (ry-rp)¥2

[(2)() )

[ ]
|_\
N+
\;
_|_
—
|
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~
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l\)‘l‘
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~—
| —
=
S~
N
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The vectors, and; can also be shown to be unit vectors. The inner prodyct of, and
is given by

S AR
) (3 (0

T3 V3 V3 V3
= 0.

N

S
S

Similarly,r,-r; = 0 andr,-r; = 0 and we can conclude tfigt r, r 5} is an orthonormal
set. (Try showing that the column vectorsAodlso form an orthonormal set @.)

Hermitian Matrices

A real matrix is called symmetric if it is equal to its own transpose. In the complex system
the more useful type of matrix is one that is equal to its @amjugatetranspose. We call
such a matriHermitian after the French mathematician Charles Hermite (1822-1901).

Definition of a A square matriA is Hermitian if
Hermitian Matrix A = A,

As with symmetric matrices, we can easily recognize Hermitian matrices by inspection
To see this, consider tf&eX 2 matrix.

A= a, +aji b+ b
c,+ci d+dyif

The conjugate transpose Atas the form
Ax = AT

_[a,+ai ¢+ ci
b, + b d; + d,i

_Ja—a G
b, —b,i d —d,if

If Ais Hermitian, thelA = A * and we can conclude thAahust be of the form

a b, + b.i
A= 1 1 2 |
[bl_bzi dl }
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Similar results can be obtained for Hermitian matrices of andern. In other words, a
square matripA is Hermitian if and only if the following two conditions are met.
1. The entries on the main diagonalfoére real.

2. The entryg; in theth row and thgth column is the complex conjugate of the emjry

CHAPTER 8 COMPLEX VECTOR SPACES
in thejth row andith column.
EXAMPLE 4 Hermitian Matrices

Which of the following matrices are Hermitian?

Theorem 8.10
The Eigenvalues of a
Hermitian Matrix

1 33— 0 3—-2
a . . b .
()_3+| i ] ()_3—2| 4 ]
3 2—-i -3 [—1 2 3
©) |2+ 0 1-—i ] 2 0o -1
3 1+i O | 3 -1 4
Soluton (@) This matrix is not Hermitian because it has an imaginary entry on its main diagonal.
(b) This matrix is symmetric but not Hermitian because the entry in the first row and
second column is not the complex conjugate of the entry in the second row and first
column.
(c) This matrix is Hermitian.
(d) This matrix is Hermitian, because all real symmetric matrices are Hermitian.
One of the most important characteristics of Hermitian matrices is that their eigenvalues
are real. This is formally stated in the next theorem.
If Ais a Hermitian matrix, then its eigenvalues are real numbers.
Proof Let A be an eigenvalue éfand

a, + b
a, + b,

a, + b,
be its corresponding eigenvector. If we multiply both sides of the equatien Av
row vectorv*, we obtain

VAV = v (V) = A(V V) = A(@? + b2+ a2+ b2+ -+ a%+Db)).

by the

Furthermore, since
(VFAVEF = v A*(V¥)* = v*Av
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it follows thatv*Av is a Hermitianl X 1 matrix. This implies thatAv is a real number,
and we may conclude that is real.

REMARK: Note that this theorem implies that the eigenvalues@élssymmetric matrix
are real, as stated in Theorem 7.7.

To find the eigenvalues of complex matrices, we follow the same procedure as for re:
matrices.

EXAMPLE 5 Finding the Eigenvalues of a Hermitian Matrix
Find the eigenvalues of the following matrix.
3 2—-i -3
A=|2+i 0 1-i
3 1+i O
Solution

The characteristic polynomial éfis
A—3 —2+i 3
Al —A|=|-2—i A =1+
=3 -1 A

=A=-3A=2) —(—2+)[(-2—0Dr— (3 + 3]

+ 3i[(1 + 3i) + 3Ai]
= —-3-20+6)—BA+9+3)+ (3 —9—9))
=23 -3\ - 161 — 12

=A+DHA-6)(r+2)
which implies that the eigenvalues/Afire —1, 6, and—2.

To find the eigenvectors of a complex matrix, we use a similar procedure to that used ft

a real matrix. For instance, in Example 5, the eigenvector corresponding to the eigenval
A = —1is obtained by solving the following equation.
A—=3 —2+i 3 [v,] [0O]
—2—1i A 14|y, 0
=3 -1-—i A |Vs] | O]
-4 -2+ 3 v [O]
—2— -1 —=1+i||v|=]0
—3i -1—-i —-1]|v| |O]




468 CHAPTER8  COMPLEX VECTOR SPACES

TECHNOLOGY
NOTE

Using Gauss-Jordan elimination, or a computer or calculator, we obtain the following
eigenvector corresponding A9 = —1.
-1
v,=|1+2| A =-1
1

Eigenvectors fon, = 6 and; = —2 can be found in a similar manner. They are
1-21 1+ 3i
6-9 | A, =6); |—2—i| (A3=-2)
13 5

Some computers and calculators have built-in programs for finding the eigenvalues and
corresponding eigenvectors of complex matrices. For example, on the TI-85, the eigVI
key on the MATRX MATH menu calculates the eigenvalues of the matrand the
eigVc key gives the corresponding eigenvectors.

Theorem 8.11

Hermitian Matrices and
Diagonalization

Proof

Just as we saw in Section 7.3 that real symmetric matrices were orthogonally diagonal-
izable, we will show now that Hermitian matrices angtarily diagonalizable. A square
matrix A is unitarily diagonalizable if there exists a unitary maiguch that

P~1AP
is a diagonal matrix. Sinde is unitary,P~! = P * so an equivalent statement is thas

unitarily diagonalizable if there exists a unitary mafixsuch thatP AP is a diagonal
matrix. The next theorem tells us that Hermitian matrices are unitarily diagonalizable.

If Ais ann X n Hermitian matrix, then
1. eigenvectors corresponding to distinct eigenvalues are orthogonal.
2. Ais unitarily diagonalizable.

To prove part 1, let; and, be two eigenvectors corresponding to the distinct (and real)
eigenvalues\; and, .Becaude, = \v;, @& = AV, we have the following equa-
tions for the matrix produdiAv,) V5.

(AV)*V, = VF ARV, = VF AV, = V§ AV, = AVE V,
(AV)*V, = (AVJ Vo = VI AV, = AV Y,
Therefore,
ANV, — A ViV, =0
(Ay = APViv, =0
Vv, =0 since A\, # A,,

and we have shown thaf awmg  are orthogonal. Part 2 of Theorem 8.11 is often called
the Spectral Theorem,and its proof is omitted.
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EXAMPLE 6 The Eigenvectors of a Hermitian Matrix
The eigenvectors of the Hermitian matrix given in Example 5 are mutually orthogona
because the eigenvalues are distinct. We can verify this by calculating the Euclidean inn
productsv, - v,, v;- V5 andr,- v,  For example,
VirV, = (—1)(1 — 21i) + (1 + 2i)(6 — 9i) + (1)(13)
= (=D + 21) + (1 + 26+ 9) + 13
=—-1-21i+6+ 12 +9 — 18+ 13
= 0.
The other two inner products-v, amd-v;  can be shown to equal zero in a similal
manner.

The three eigenvectors in Example 6 are mutually orthogonal because they correspond
distinct eigenvalues of the Hermitian matixTwo or more eigenvectors corresponding to
the same eigenvector may not be orthogonal. However, once we obtain any set of lineal
independent eigenvectors for a given eigenvalue, we can use the Gram-Schmidt orthon
malization process to obtain an orthogonal set.

EXAMPLE 7 Diagonalization of a Hermitian Matrix
Find a unitary matriP such thatP*AP is a diagonal matrix where
3 2-i =3
A=|2+i 0 1—i
3 1+ 0
Solution ~ The eigenvectors oA are given after Example 5. We form the mafixy normalizing

these three eigenvectors and using the results to create the coluPaios, since
IVl = (-1, 1+ 2, D] =VI+5+1=V7
vl = [I(1 — 21, 6 — 9i, 13)[| = V442 + 117 + 169 = /728
vil = (1 + 3, —2 i, 5)] = VIO + 5+ 25 = V40

we obtain the unitary matrii,

1 1-21 1+ 3]

V7 V728 V40
1+2 6-9 -2-i
P=1 7 728 \/40
1 13 5
V7 728 /40
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Comparison of
Hermitian and

Symmetric Matrices

Try computing the produd®*AP for the matriceA andP in Example 7 to see that you
obtain

-1 0 0
PAP=| 0 6 0
0 0 -2

where—1, 6, and-2 are the eigenvaluesfof

We have seen that Hermitian matrices are unitarily diagonalizable. However, it turns out
that there is a larger class of matrices, calleanal matrices, which are also unitarily di-
agonalizable. A square complex matdixs normal if it commutes with its conjugate trans-
pose:AA* = A*A. The main theorem of normal matrices says that a complex nAaisix
normal if and only if it is unitarily diagonalizable. You are asked to explore normal matri-
ces further in Exercise 59.

The properties of complex matrices described in this section are comparable to the
properties of real matrices discussed in Chapter 7. The following summary indicates the
correspondence between unitary and Hermitian complex matrices when compared with or-
thogonal and symmetric real matrices.

A is a symmetric matrix A is a Hermitian matrix
(Real) (Complex)

1. Eigenvalues oA are real. 1. Eigenvalues éfare real.

2. Eigenvectors corresponding to 2. Eigenvectors corresponding to
distinct eigenvalues are distinct eigenvalues are
orthogonal. orthogonal.

3. There exists an orthogonal 3. There exists a unitary matrix
matrix P such that P such that

PTAP P*AP

is diagonal. is diagonal.
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In Exercises 1-8, determine the conjugate transpose of the given

matrix.
1A—7i —i 5 A 1+2i 2—i
2 s IR | 1
0 1 4+3i 2+
A7 0] 4'A_[2—i Gi]
[0 5+i Va2
5, A=|5-i 6 4
-V2 4 3
~ 7+ 5i
2+1 33— 4 + 5i i
A= 7. A= 2
6 3-i 2 GfZi] '
- 4
2 i
8. A=|5 3i
0 6—i
In Exercises 912, explain why the given matrind$ unitary.
[i 0 1 i
A= 10. A =
oA=|g o S
i i
11 A— V2 V2
0 1 0
1 1 1+ ]
2 2 2
' V3 V3 V3
_} 1 _1+i
2 2 2|

In Exercises 13-18, determine whetleis unitary by calculating
AA*,

T+i 1+i 1+i 11—

13. A= : ) 14.A = : :

1—-1 1-i 11—i 1+

15.A= I, 16.A=|V2 V2
| |

V2 V2
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[ i i ]
V2 V3 Ve 4 3
PR L E IR T PR
' V2 V3 6 ' §i ﬂ-i
o R -
i V3 Ve

In Exercises 19-22. (a) verify thatis unitary by showing that its
rows are orthonormal, and (b) determine the inverse of

4 §i 1+ 1+ i
| 5 5 |2 2
19. A= 3 ﬂi 20.A = 1 1
5 5 V2 V2
g a1 V3-i 1+V3Ei
' 2V2|V3+i 1-V3i
0 1 0
-1+ 0 11—
22.A=| V6 V3
2,1
V6 V3
In Exercises 23-28, determine whether the matiix Hermitian.
[0 2+i
. . ol 1 0
23.A=|2—i i 0 24.A = 0 1
1 0 1

25. A= 0 I}

M1 2+i  3—i
26'A_72—| 2 3+i}

0 0
27. A=

10 0]

o1 V2 +i 5
28.A=|V2—i 2 3+

5 3—i 6
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In Exercises 29-34, determine the eigenvalues of the matrix

wscl$ )

=l 50

4
30.A:[0 2 |}

2—1 4

wre[2 ]

1+i 2
, i
V2 V2
[
3B.A=| —~ 2 0
2
i
— 0 2
V2
1 4 1—i
4. A=|0 i 3i
0 0 2+i

In Exercises 35-38, determine the eigenvectors of the given matrix.

35. The matrix in Exercise 29.
36. The matrix in Exercise 30.
37. The matrix in Exercise 33.
38. The matrix in Exercise 32.

In Exercises 39-43, find a unitary matfxthat diagonalizes the

given matrixA.

To0 i 0 24
ma-[ 0 wa[,0 2]
o,
V2 V2
i
41 A=|—F 2 0
V2
i
—= 0 2
V2
[ 4 242
42. A =
12 — 2i 6]
-1 0 0
43.A=| 0 T
|0 —1—i 0

44. Let z be a complex number with modulus 1. Show that the
following matrix is unitary.

z z

iz —iz

In Exercises 45-48, use the result of Exercise 44 to deteanme
andc so thatA is unitary.

(3 — 4i

1[-1 a 1 a
45 A= 46.A=

° \/ﬁ[b c] 6 2| >
| b c
. 6+ 3i

10 a 1 |a

47.A——\[2[b C] 48.A= 5 i \/CE

In Exercises 49-52, prove the given formula, whierand B are
n X n complex matrices.

49. (A¥)* = A 50. (A + B)* = A* + B*

51. (kA)* = kA* 52. (AB)* = B*A*

53. Let A be a matrix such tha* + A= O. Prove that is
Hermitian.

54. Show that de€®d) = det(A), wherAis a2 X 2 matrix.

In Exercises 55-56, assume that the result of Exercise 54 is true for
matrices of any size.

55. Show thatdet(A*) = det(A).
56. Prove that ifA is unitary, then|det(A)| = 1.

57. (a) Prove that every Hermitian matdxcan be written as the
sumA = B + iC, whereB is a real symmetric matrix and
C is real and skew-symmetric.

(b) Use part (a) to write the matrix

2 1+i
A=
A

as a sunA = B + iC, wherB is a real symmetric matrix
andC is real and skew-symmetric.

(c) Prove that everym X n  complex matixcan be written
asA = B + iC, whereB andC are Hermitian.

(d) Use part (c) to write the complex matrix

A i 2
Tl2+i1-2

as a sumhA = B + iC, wherB andC are Hermitian.
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58. Determine which of the following sets are subspaces of the (d) Find a2 X 2 matrix that is unitary, but not Hermitian.

vector space afl X n - complex matrices. (e) Find a2 X 2 matrix that is normal, but neither Hermitian

(&) The set oh X n Hermitian matrices. nor unitary.

(b) The set oh X n unitary matrices. (f) Find the eigenvalues and corresponding eigenvectors of

(c) The set oh X n normal matrices. your matrix from part (e).

(g) Show that the complex matrix

59. (a) Prove that every Hermitian matrix is normal. i1
(b) Prove that every unitary matrix is normal. [0 i ]

(c) Find a2 X 2 matrix that is Hermitian, but not unitary. is not diagonalizable. Is this matrix normal?

CHAPTER 8 [| REVIEW EXERCISES

In Exercises 1-6, perform the given operation. 23 Q- 21+ 2) 24 5+ 2
1. Findu+z:u=2-4i,z=4i ' 3—-3i (-2 4+ 2)(2 - 3i)
2. Findu—2z:u=4,2z=8i In Exercises 25 and 26, fildl™*  (if it exists).
3. Finduz:u=4-2i,z=4+ 2 . )
4. Finduz:u=2i,z=1— 2i 3-i -l-2
u 25.A=| 23 11 ,
5. Find_:u=6-2,z=3-3 g tgl 2+3
u .
.Find—:u= i,z=1 5 1-i
6F|ndzu 7+i,z=i 26.A=[0 i ]

In Exercises 7-10, find all zeros of the given polynomial. In Exercises 27-30, determine the polar form of the complex

7.x2 - 4x + 8 8.x% — 4x+ 7 number.
9.3x*+ 3x + 3 10.x3+ 2x2 + 2x + 1 27 4 4 4 28.3 + i
In Exercises 11-14, perform the given operation using 29.7 — i 30. V3 +i
A= 4-i 2 | andB = 1 + i i . In Exercises 31-34, find the standard form of the given complex
3 3+i 2 241 number.
11.A+B 12.2iB ™ . T
31.5/cos —— | +isin{——
13. det(A — B) 14.3BA [ S( 6) ( 6)]
In Exercises 15-20, perform the given operation using 57 . . 57
2—-2,v=3+1i, andz= -1+ 2i. 32.4cos4+|sm4
Z v 2 .2 3 .. 3
15. z 16.v B 33.6(cos—w +ign 77) 34. 7(cos—w +i sn—Tr)
17. |w| 18. |vZ| 3 3 2 2
19. w 20. |zw| In Exercises 35-38, perform the indicated operation. Leave the

In Exercises 21-24, perform the indicated operation. result in polar form.

9y 2] 2p L1 35. [4<c03127 +i sinfﬂ[s(cosf 4 sinfﬂ

2 - -1+ 2i 2 6 6
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2 2 In Exercises 57-60, determine whether the given matrix is unitary.

9[cos(w/2) + i sin(w/2)] i1 2+i 1+
6[cos(2/3) + i sin(2m/3)] 57 V2 V2 g | 4 4
i i 11 2
4[cos(m/4) + isin(m/4)] - = - Ve
" 7[cos(w/3) + i sin(7/3)] V2 V2 ERNE
In Exercises 39— 42, find the indicated power of the given number [ 1
and express the result in polar form. 0
V2 V2
1 _ 4 \3
39. (-1-1) 40. (2i) 59, [1, _(,)] 6.l o i 0
7 4 .
41, | V2{cosT +isn” 42.|5/cos™ +isn” 1+ 0 —l-i
6 6 3 3 2 2
In Exercises 43—-46, express the given roots in standard form. ] ) ) o
o o In Exercises 61 and 62, determine whether the given matrix is
43. Square rootsZS(cos? +i sin?) Hermitian.
1 =1+ 2—1i]
w . . T . .
44. Cube rootsZ?(cosE +i SII’]g) 61. [1—i 3 i
12+ —i 4 |
45. Cube rootsi - .
9 2—i 2
46. Fourth rootsi6<cosg +i sin%) 62. 12 + i 0 -1
| 2 =1+ 3 |

In Exercises 47 and 48, determine the conjugate transpose of the ) ) ] )
given matrix. In Exercises 63 and 64, find the eigenvalues and corresponding

eigenvectors of the given matrix.

(1440 3+ :
47'A_[3—i 2+i] 42— 2 0
63. [2 L ] 640 3 0
5 2—i 3+ 2 i 0 2
48. A=|2+2 3-2 i 65. Prove that if A is an invertible matrix, them* is also
3i 2+i —-1-2 invertible.

66. Determine all complex numbezssuch thaz = —z

67. Prove that if the product of two complex numbers is zero,
then one of the numbers must be zero.

In Exercises 49-52, find the indicated vector usirg (4i, 2 + i),
v= (3 —i),andw=(3—1i,4+1).

49. 7u — v 50.3iw + (4 — i)v 68. (a) Find the determinant of the following Hermitian matrix.
51.iu + iv — iw 52.(3 + 2i)u — (—2)w 3 2 _j —3

In Exercises 53 and 54, determine the Euclidean norm of the given 2+ 0 1—i

vector. 3i 1+ 0

53.v = (3 — 5i, 2i) 54.v = (3i, -1 — 5i,3 + 2i) (b) Prove that the determinant of any Hermitian matrix is real.

69. Let A and B be Hermitian matrices. Prove thaB = BA if
and only ifAB is Hermitian.

70. Let u be a unit vector irC". DefineH = | — 2uu®. Prove
55.v=(2—1i,i), u=(i,2—1i) thatH is ann X n Hermitian and unitary matrix.

In Exercises 55 and 56, find the Euclidean distance between the
given vectors.
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72.

73.
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Use mathematical induction to prove DeMoivre’s Theorem. 75. Prove that for all vectors andv in a complex inner product

Prove that ifzis a zero of a polynomial equation with real co- space,
efficients, then the conjugate ofs also a zero.

Show that ifz; + z, andzz, are both nonzero real numbers,
thenz, andz, are both real numbers.

Prove that ifzandw are complex numbers, then
|lz+w| = |7 + |w|.

u,v) = Zfllu + VIP = flu = vIP + illu + iv]?

—iflu = iv]f].

CHAPTER 8 PROJECTS

1 Population Growth and Dynamical Systems - Il

In the projects for Chapter 7, you were asked to model the population of two species usil
a system of differential equations of the form

Y11 = ay,(t) + by,(1)

y5(t) = cyy(t) + dy,(1).

The constants, b, ¢, andd depend on the particular species being studied. In Chapter 7,
we looked at an example of a predator—prey relationship, in wehieh0.5, b = 0.6,

¢ = —0.4,andd = 3.0. Suppose we now consider a slightly different model.

y4(t) = 0.6y,(t) + 0.8y,(1), vy,(0) = 36

y5(t) = —0.8y,(t) + 0.6y,(1), y,(0) =121

1. Use the diagonalization technique to find the general solytjéns  y,@hd a

any timet > 0. Although the eigenvalues and eigenvectors of the matrix
0.6 08
A= [70.8 0.6]

are complex, the same principles apply, and you can obtain complex exponer
tial solutions.

. Convert your complex solutions to real solutions by observing that if

A = a+ biis a (complex) eigenvalue #&fwith (complex) eigenvector, then
the real and imaginary parts €fv  form a linearly independent pair of (real)
solutions. You will need to use the formel = cos 6 + i sin 6.

. Use the initial conditions to find the explicit form of the (real) solutions to the

original equations.

. If you have access to a computer or graphing calculator, graph the solution

obtained in part (3) over the domairg@ < 3. At what moment are the two
populations equal?

. Interpret the solution in terms of the long-term population trend for the two

species. Does one species ultimately disappear? Why or why not? Contrast th
solution to that obtained for the model in Chapter 7.

. If you have access to a computer or graphing calculator that can numericall

solve differential equations, use it to graph the solutions to the original systen
of equations. Does this numerical approximation appear to be accurate?



